Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Eur J Neurosci ; 56(6): 4788-4802, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35971965

RESUMO

We examined the behavioural responses and Fos expression pattern of rats that were exposed to snake threats from shed snakeskin and a live snake. We differentiated the behavioural responses and the pattern of Fos expression in response to the odour cues and mild threat from a live snake. Animals exposed to the snake odour alone or to the confined snake showed a great deal of risk assessment. Conversely, the intensification of odour during exposure to the live snake decreased the threat ambiguity, and the animals froze for a significantly longer period. Our Fos analysis showed that a pathway formed by the posteroventral part of the medial amygdalar nucleus to the central part of the ventromedial hypothalamic nucleus appeared to be solely responsive to odour cues. In addition, we showed increased Fos expression in a parallel circuit comprising the lateral amygdalar nucleus, ventral subiculum, lateral septum, and juxtadorsomedial region of the lateral hypothalamic area that is responsive to both the odour and mild threat from a live snake. This path is likely to process the environmental boundaries of the threat to be avoided. Both paths merge into the dorsal premammillary nucleus and periaqueductal grey sites, which all increase Fos expression in response to the snake threats and are likely to organize the defensive responses. Moreover, we found that the snake threat mobilized the Edinger-Westphal and supraoculomotor nuclei, which are involved in stress adaptation and attentional mechanisms.


Assuntos
Complexo Nuclear Basolateral da Amígdala , Comportamento Animal , Animais , Complexo Nuclear Basolateral da Amígdala/metabolismo , Comportamento Animal/fisiologia , Medo/fisiologia , Substância Cinzenta Periaquedutal/fisiologia , Proteínas Proto-Oncogênicas c-fos/metabolismo , Ratos , Serpentes/metabolismo
2.
Eur J Neurosci ; 53(11): 3743-3767, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33818841

RESUMO

Several useful animal models for parkinsonism have been developed so far. Haloperidol-induced catalepsy is often used as a rodent model for the study of motor impairments observed in Parkinson's disease and related disorders and for the screening of potential antiparkinsonian compounds. The objective of this systematic review is to identify publications that used the haloperidol-induced catalepsy model for parkinsonism and to explore the methodological characteristics and the main questions addressed in these studies. A careful systematic search of the literature was carried out by accessing articles in three different databases: Web of Science, PubMed and SCOPUS. The selection and inclusion of studies were performed based on the abstract and, subsequently, on full-text analysis. Data extraction included the objective of the study, study design and outcome of interest. Two hundred and fifty-five articles were included in the review. Publication years ranged from 1981 to 2020. Most studies used the model to explore the effects of potential treatments for parkinsonism. Although the methodological characteristics used are quite varied, most studies used Wistar rats as experimental subjects. The most frequent dose of haloperidol used was 1.0 mg/kg, and the horizontal bar test was the most used to assess catalepsy. The data presented here provide a framework for an evidence-based approach to the design of preclinical research on parkinsonism using the haloperidol-induced catalepsy model. This model has been used routinely and successfully and is likely to continue to play a critical role in the ongoing search for the next generation of therapeutic interventions for parkinsonism.


Assuntos
Catalepsia , Transtornos Parkinsonianos , Animais , Catalepsia/induzido quimicamente , Modelos Animais de Doenças , Haloperidol/toxicidade , Transtornos Parkinsonianos/induzido quimicamente , Transtornos Parkinsonianos/tratamento farmacológico , Ratos , Ratos Wistar
3.
Exp Brain Res ; 239(6): 1963-1974, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33885919

RESUMO

Dopamine seems to mediate fear conditioning through its action on D2 receptors in the mesolimbic pathway. Systemic and local injections of dopaminergic agents showed that D2 receptors are preferentially involved in the expression, rather than in the acquisition, of conditioned fear. To further examine this issue, we evaluated the effects of systemic administration of the dopamine D2-like receptor antagonists sulpiride and haloperidol on the expression and extinction of contextual and cued conditioned fear in rats. Rats were trained to a context-CS or a light-CS using footshocks as unconditioned stimuli. After 24 h, rats received injections of sulpiride or haloperidol and were exposed to the context-CS or light-CS for evaluation of freezing expression (test session). After another 24 h, rats were re-exposed to the context-CS or light-CS, to evaluate the extinction recall (retest session). Motor performance was assessed with the open-field and catalepsy tests. Sulpiride, but not haloperidol, significantly reduced the expression of contextual and cued conditioned fear without affecting extinction recall. In contrast, haloperidol, but not sulpiride, had cataleptic and motor-impairing effects. The results reinforce the importance of D2 receptors in fear conditioning and suggest that dopaminergic mechanisms mediated by D2 receptors are mainly involved in the expression rather than in the extinction of conditioned freezing.


Assuntos
Condicionamento Clássico , Extinção Psicológica , Medo , Receptores de Dopamina D2 , Animais , Dopaminérgicos , Ratos , Ratos Wistar
4.
Behav Pharmacol ; 30(2 and 3-Spec Issue): 229-238, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30632994

RESUMO

Catalepsy - an immobile state in which individuals fail to change imposed postures - can be induced by haloperidol. In rats, the pattern of haloperidol-induced catalepsy is very similar to that observed in Parkinson's disease (PD). As some PD symptoms seem to depend on the patient's emotional state, and as anxiety disorders are common in PD, it is possible that the central mechanisms regulating emotional and cataleptic states interplay. Previously, we showed that haloperidol impaired contextual-induced alarm calls in rats, without affecting footshock-evoked calls. Here, we evaluated the influence of distinct aversive stimulations on the haloperidol-induced catalepsy. First, male Wistar rats were subjected to catalepsy tests to establish a baseline state after haloperidol or saline administration. Next, distinct cohorts were exposed to open-field; elevated plus-maze; open-arm confinement; inescapable footshocks; contextual conditioned fear; or corticosterone administration. Subsequently, catalepsy tests were performed again. Haloperidol-induced catalepsy was verified in all drug-treated animals. Exposure to open-field, elevated plus-maze, open-arm confinement, footshocks, or administration of corticosterone had no significant effect on haloperidol-induced catalepsy. Contextual conditioned fear, which is supposed to promote a more intense fear, increased catalepsy over time. Our findings suggest that only specific defensive circuitries modulate the nigrostriatal system mediating the haloperidol-induced cataleptic state.


Assuntos
Afeto/efeitos dos fármacos , Catalepsia/fisiopatologia , Medo/efeitos dos fármacos , Animais , Comportamento Animal/efeitos dos fármacos , Condicionamento Clássico/efeitos dos fármacos , Modelos Animais de Doenças , Antagonistas de Dopamina/farmacologia , Haloperidol/farmacologia , Masculino , Doença de Parkinson/metabolismo , Ratos , Ratos Wistar
5.
Exp Brain Res ; 235(2): 429-436, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27766352

RESUMO

Considering the complexity of aversive information processing and defensive response expression, a combined action of stress modulators may be required for an optimal performance during threatening situations. Dopamine is now recognized as one of the most active modulators underlying states of fear and anxiety. On the other hand, activation of hypothalamic-pituitary-adrenocortical (HPA) axis, which leads to the release of corticosterone in rodents, has been considered a key part of the stress response. The current study is an extension of prior work investigating modulatory effects of dopamine and corticosterone on conditioned fear expression. We have showed that corticosterone, acting through mineralocorticoid receptors in the ventral tegmental area (VTA), upregulates dopaminergic system in the basolateral amygdala (BLA), enabling the expression of conditioned freezing response. The novel question addressed here is whether VTA-BLA dopaminergic signaling is necessary for increases in corticosterone during conditioned fear expression. Using site-specific treatment with D2-like agonist quinpirole (VTA) and D2-like antagonist sulpiride (BLA), we evaluated freezing and plasma corticosterone in rats exposed to a light used as aversive conditioned stimulus (CS). Intra-VTA quinpirole and intra-BLA sulpiride significantly decreased freezing expression in the conditioned fear test, but this anxiolytic-like effect of the dopaminergic drugs was not associated with changes in plasma corticosterone concentrations. Altogether, data suggest that interferences with the ability of the CS to activate the dopaminergic VTA-BLA pathway reduce the expression of freezing, but activation of the HPA axis seems to occur upstream of the recruitment of dopaminergic mechanisms in conditioned fear states.


Assuntos
Condicionamento Psicológico/fisiologia , Medo/fisiologia , Reação de Congelamento Cataléptica/fisiologia , Receptores de Dopamina D2/metabolismo , Tonsila do Cerebelo/efeitos dos fármacos , Tonsila do Cerebelo/fisiologia , Animais , Condicionamento Psicológico/efeitos dos fármacos , Corticosterona/metabolismo , Dopamina/farmacologia , Dopaminérgicos/farmacologia , Medo/efeitos dos fármacos , Reação de Congelamento Cataléptica/efeitos dos fármacos , Sistema Hipotálamo-Hipofisário/efeitos dos fármacos , Sistema Hipotálamo-Hipofisário/fisiologia , Masculino , Microinjeções , Sistema Hipófise-Suprarrenal/efeitos dos fármacos , Sistema Hipófise-Suprarrenal/fisiologia , Ratos , Ratos Wistar , Área Tegmentar Ventral/efeitos dos fármacos , Área Tegmentar Ventral/fisiologia
6.
Sci Rep ; 14(1): 1828, 2024 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-38246941

RESUMO

Here, we analyze critical changes in environmental law enforcement in the Brazilian Amazon between 2000 and 2020. Based on a dataset of law enforcement indicators, we discuss how these changes explain recent Amazon deforestation dynamics. Our analysis also covers changes in the legal prosecution process and documents a militarization of enforcement between 2018 and 2022. From 2004 to 2018, 43.6 thousand land-use embargoes and 84.3 thousand fines were issued, targeting 3.3 million ha of land, and totaling USD 9.3 billion in penalties. Nevertheless, enforcement relaxed and became spatially more limited, signaling an increasing lack of commitment by the State to enforcing the law. The number of embargoes and asset confiscations dropped by 59% and 55% in 2019 and 2020, respectively. These changes were accompanied by a marked increase in enforcement expenditure, suggesting a massive efficiency loss. More importantly, the creation of so-called conciliation hearings and the centralization of legal processes in 2019 reduced the number of actual judgments and fines collected by 85% and decreased the ratio between lawsuits resulting in paid fines over filed ones from 17 to 5%. As Brazil gears up to crack-down on illegal deforestation once again, our assessment suggests urgent entry points for policy action.


Assuntos
Aplicação da Lei , Controle Social Formal , Brasil , Gastos em Saúde , Audição
7.
Behav Pharmacol ; 24(4): 264-74, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23751519

RESUMO

Although dopaminergic systems are more commonly associated with the reinforcing effects of various stimuli, numerous reports have demonstrated a relationship between changes in dopaminergic transmission and aversive situations. In the present study, we examined the involvement of D1-like and D2-like receptors in the expression of conditioned freezing using the context as the conditioned stimulus. Intraperitoneal injections of the D1 agonist SKF38393 or the D1 antagonist SCH23390 did not change the conditioned freezing in rats subjected to the contextual fear paradigm. In contrast, intraperitoneal injections of the D2 agonist quinpirole and the D2 antagonist sulpiride caused a significant dose-dependent reduction in the expression of contextual conditioned freezing. As these data may reflect that the systemic manipulations acted on dopaminergic receptors in different brain areas, the effects of administration of quinpirole and sulpiride into the ventral tegmental area (VTA) and the basolateral amygdala complex (BLA) on the expression of contextual conditioned freezing were also evaluated. Intra-VTA quinpirole and intra-BLA sulpiride injections reduced the conditioned freezing response; intra-VTA sulpiride and intra-BLA quinpirole injections had no significant effects. These data suggest that D2-like receptors, but not D1-like receptors, play an important role in the expression of contextual conditioned freezing. Quinpirole may act at D2 presynaptic receptors located in the VTA, decreasing dopamine levels in the terminal fields of the mesolimbic pathway. The effects of sulpiride, in contrast, appear to be triggered by an action on postsynaptic dopaminergic receptors located in the BLA. However, it cannot be totally excluded that the injected solutions did not also affect neighboring amygdalar regions. Together with previous findings, the present data suggest the need to consider dopaminergic mechanisms in the mesolimbic circuit as novel targets for the pharmacological treatment of fear-related disorders, especially post-traumatic stress disorder.


Assuntos
Tonsila do Cerebelo/fisiologia , Condicionamento Psicológico/fisiologia , Medo , Receptores de Dopamina D2/fisiologia , Área Tegmentar Ventral/fisiologia , Tonsila do Cerebelo/efeitos dos fármacos , Animais , Condicionamento Psicológico/efeitos dos fármacos , Dopaminérgicos/farmacologia , Eletrochoque/efeitos adversos , Comportamento Exploratório/fisiologia , Medo/efeitos dos fármacos , Reação de Congelamento Cataléptica/efeitos dos fármacos , Masculino , Microinjeções , Ratos , Ratos Wistar , Área Tegmentar Ventral/efeitos dos fármacos
8.
Ann N Y Acad Sci ; 1521(1): 79-95, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36606723

RESUMO

The cuneiform nucleus (CUN) is a midbrain structure located lateral to the caudal part of the periaqueductal gray. In the present investigation, we first performed a systematic analysis of the afferent and efferent projections of the CUN using FluoroGold and Phaseolus vulgaris leucoagglutinin as retrograde and anterograde neuronal tracers, respectively. Next, we examined the behavioral responses to optogenetic activation of the CUN and evaluated the impact of pharmacological inactivation of the CUN in both innate and contextual fear responses to a predatory threat (i.e., a live cat). The present hodologic evidence indicates that the CUN might be viewed as a caudal component of the periaqueductal gray. The CUN has strong bidirectional links with the dorsolateral periaqueductal gray (PAGdl). Our hodological findings revealed that the CUN and PAGdl share a similar source of inputs involved in integrating information related to life-threatening events and that the CUN provides particularly strong projections to brain sites influencing antipredatory defensive behaviors. Our functional studies revealed that the CUN mediates innate freezing and flight antipredatory responses but does not seem to influence the acquisition and expression of learned fear responses.


Assuntos
Formação Reticular Mesencefálica , Substância Cinzenta Periaquedutal , Substância Cinzenta Periaquedutal/fisiologia , Neurônios
9.
Front Behav Neurosci ; 16: 867180, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35481243

RESUMO

In animal models, the administration of the dopaminergic D2 antagonist haloperidol affects the nigrostriatal pathway, inducing catalepsy, a state of immobility similar to Parkinson's disease (PD) bradykinesia and akinesia. In PD, the motor impairments are due to difficulties in selecting and executing motor actions, associated with dopamine loss in basal ganglia and cortical targets. Motor and affective limbic networks seem to be integrated via a striato-nigro-striatal network, therefore, it is not surprising that the motor impairments in PD can be influenced by the patient's emotional state. Indeed, when exposed to aversive stimuli or life-threatening events, immobile patients are capable of performing sudden movements, a phenomenon known as paradoxical kinesia. Thus, the present study investigated the effects of unconditioned and conditioned aversive stimulation on haloperidol-induced catalepsy in rats. First, male Wistar rats received intraperitoneal administration of saline or haloperidol (1 or 2 mg/kg) and were evaluated in the catalepsy bar test to assess the cataleptic state induced by the different doses of haloperidol over time. Next, we evaluated the effects of two types of unconditioned aversive stimuli-100 lux light (1 and 20 s) or 0.6 mA footshock (1 s)-on the catalepsy. Finally, we evaluated the effects of light conditioned stimuli (Light-CS), previously paired with footshocks, on the cataleptic state. Catalepsy was observed following haloperidol 1 and 2 mg/kg administration. Exposure to footshocks, but not to light, significantly reduced step-down latency during the catalepsy test. Although unconditioned light did not affect catalepsy, paired Light-CS did reduce step-down latency. Here, we have provided evidence of face validity for the study of paradoxical kinesia. In addition to demonstrating that immediate exposure to an aversive stimulus is capable of disrupting the cataleptic state, our findings show that haloperidol-induced catalepsy seems to be differently influenced depending on the modality of aversive stimulation. Our data suggest that the selective recruitment of threat response systems may bypass the dysfunctional motor circuit leading to the activation of alternative routes to drive movement.

10.
J Psychopharmacol ; 36(12): 1371-1383, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36239039

RESUMO

RATIONALE: Cannabidiol (CBD), the major non-psychoactive constituent of cannabis, has therapeutic potential for the treatment of anxiety. Most preclinical studies investigate only acute effects of CBD and only in males, yet the drug is most likely to be used over a sustained period in clinical practice. OBJECTIVES: The objectives of this study were to investigate the anxiolytic-like effect of CBD in female rats compared to males and to determine whether the responsiveness of females was influenced by the stage of the estrous cycle. METHODS: We carried out experiments to compare the effect of CBD in male and female rats in the elevated plus maze (EPM) in response to acute and short-term (4 days) administration through a complete cycle in females. RESULTS: Male and female rats behaved in a similar manner in the EPM, but females in the late diestrus (LD) phase exhibited more anxiety-like behavior than at other stages, the difference reaching statistical significance compared to proestrus stages. CBD produced anxiolytic-like effects in both sexes, but female rats were responsive only in LD and 10-fold lower dose than males. After sub-chronic (4 days) treatment, responsiveness to CBD was maintained in females in LD, but females in proestrus remained unresponsive to CBD treatment. CONCLUSIONS: We suggest that there are sex differences in the anxiolytic-like effects of CBD in rats that reflect different underlying mechanisms: based on literature data, gonadal hormone status linked to GABAA receptor expression in females, and 5-HT1A receptor activation in males.


Assuntos
Ansiolíticos , Canabidiol , Feminino , Masculino , Ratos , Animais , Ansiolíticos/farmacologia , Canabidiol/farmacologia , Canabidiol/uso terapêutico , Teste de Labirinto em Cruz Elevado , Caracteres Sexuais , Ratos Wistar , Ansiedade/tratamento farmacológico , Ansiedade/metabolismo , Receptores de GABA-A
11.
Transl Psychiatry ; 11(1): 315, 2021 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-34031365

RESUMO

The orbitofrontal cortex-ventromedial striatum (OFC-VMS) circuitry is widely believed to drive compulsive behavior. Hyperactivating this pathway in inbred mice produces excessive and persistent self-grooming, which has been considered a model for human compulsivity. We aimed to replicate these findings in outbred rats, where there are few reliable compulsivity models. Male Long-Evans rats implanted with optical fibers into VMS and with opsins delivered into OFC received optical stimulation at parameters that produce OFC-VMS plasticity and compulsive grooming in mice. We then evaluated rats for compulsive self-grooming at six timepoints: before, during, immediately after, and 1 h after each stimulation, 1 and 2 weeks after the ending of a 6-day stimulation protocol. To further test for effects of OFC-VMS hyperstimulation, we ran animals in three standard compulsivity assays: marble burying, nestlet shredding, and operant attentional set-shifting. OFC-VMS stimulation did not increase self-grooming or induce significant changes in nestlet shredding, marble burying, or set-shifting in rats. Follow-on evoked potential studies verified that the stimulation protocol altered OFC-VMS synaptic weighting. In sum, although we induced physiological changes in the OFC-VMS circuitry, we could not reproduce in a strongly powered study in rats a model of compulsive behavior previously reported in mice. This suggests possible limitations to translation of mouse findings to species higher on the phylogenetic chain.


Assuntos
Comportamento Compulsivo , Optogenética , Animais , Corpo Estriado , Masculino , Camundongos , Filogenia , Córtex Pré-Frontal , Ratos , Ratos Long-Evans
12.
Pharmacol Biochem Behav ; 92(2): 351-6, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19353757

RESUMO

In recent years, studies in behavioral pharmacology have shown the involvement of dopaminergic mechanisms in avoidance behavior as assessed by the two-way active avoidance test (CAR). Changes in dopaminergic transmission also occur in response to particularly threatening challenges. However, studies on the effects of benzodiazepine (BZD) drugs in this test are still unclear. Given the interplay of dopamine and other neurotransmitters in the neurobiology of anxiety and schizophrenia the aim of this work was to evaluate the effects of systemic administration of midazolam, the dopaminergic agonist apomorphine, and the D2 receptor antagonist sulpiride using the CAR, a test that shows good sensitivity to typical neuroleptic drugs. Whereas midazolam did not alter the avoidance response, apomorphine increased and sulpiride reduced them in this test. Escape was not affected by any drug treatments. Heightened avoidance was not associated with the increased motor activity caused by apomorphine. In contrast with the benzodiazepine midazolam, activation of post-synaptic D2 receptors with apomorphine facilitates, whereas the D2 receptor antagonism with sulpiride inhibited the acquisition of the avoidance behavior. Together, these results bring additional evidence for a role of D2 mechanisms in the acquisition of the active avoidance.


Assuntos
Apomorfina/farmacologia , Aprendizagem da Esquiva/efeitos dos fármacos , Midazolam/farmacologia , Sulpirida/farmacologia , Animais , Masculino , Ratos , Ratos Wistar
13.
Chem Biol Drug Des ; 92(2): 1475-1487, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29682904

RESUMO

In this work, a group of α-keto-based inhibitors of the cruzain enzyme with anti-chagas activity was selected for a three-dimensional quantitative structure-activity relationship study (3D-QSAR) combined with molecular dynamics (MD). Firstly, statistical models based on Partial Least Square (PLS) regression were developed employing comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) descriptors. Validation parameters (q2 and r2 )for the models were, respectively, 0.910 and 0.997 (CoMFA) and 0.913 and 0.992 (CoMSIA). In addition, external validation for the models using a test group revealed r2pred  = 0.728 (CoMFA) and 0.971 (CoMSIA). The most relevant aspect in this study was the generation of molecular fields in both favorable and unfavorable regions based on the models developed. These fields are important to interpret modifications necessary to enhance the biological activities of the inhibitors. This analysis was restricted considering the inhibitors in a fixed conformation, not interacting with their target, the cruzain enzyme. Then, MD was employed taking into account important variables such as time and temperature. MD helped describe the behavior of the inhibitors and their properties showed similar results as those generated by QSAR-3D study.


Assuntos
Proteínas de Protozoários/antagonistas & inibidores , Relação Quantitativa Estrutura-Atividade , Sítios de Ligação , Domínio Catalítico , Doença de Chagas/tratamento farmacológico , Doença de Chagas/patologia , Cisteína Endopeptidases/metabolismo , Humanos , Análise dos Mínimos Quadrados , Simulação de Dinâmica Molecular , Proteínas de Protozoários/metabolismo
14.
Front Neuroanat ; 11: 57, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28790894

RESUMO

Urocortin 3 (UCN3) is a neuropeptide member of the corticotropin-releasing factor (CRF) peptide family that acts as a selective endogenous ligand for the CRF, subtype 2 (CRF2) receptor. Immunohistochemistry and in situ hybridization data from rodents revealed UCN3-containing neurons in discrete regions of the central nervous system (CNS), such as the medial preoptic nucleus, the rostral perifornical area (PFA), the medial nucleus of the amygdala and the superior paraolivary nucleus. UCN3-immunoreactive (UCN3-ir) terminals are distributed throughout regions that mostly overlap with regions of CRF2 messenger RNA (mRNA) expression. Currently, no similar mapping exists for non-human primates. To better understand the role of this neuropeptide, we aimed to study the UCN3 distribution in the brains of New World monkeys of the Sapajus genus. To this end, we analyzed the gene and peptide sequences in these animals and performed immunohistochemistry and in situ hybridization to identify UCN3 synthesis sites and to determine the distribution of UCN3-ir terminals. The sequencing of the Sapajus spp. UCN3-coding gene revealed 88% and 65% identity to the human and rat counterparts, respectively. Additionally, using a probe generated from monkey cDNA and an antiserum raised against human UCN3, we found that labeled cells are mainly located in the hypothalamic and limbic regions. UCN3-ir axons and terminals are primarily distributed in the ventromedial hypothalamic nucleus (VMH) and the lateral septal nucleus (LS). Our results demonstrate that UCN3-producing neurons in the CNS of monkeys are phylogenetically conserved compared to those of the rodent brain, that the distribution of fibers agrees with the distribution of CRF2 in other primates and that there is anatomical evidence for the participation of UCN3 in neuroendocrine control in primates.

15.
Artigo em Inglês | MEDLINE | ID: mdl-15866360

RESUMO

The phenomenon known as one-trial tolerance (OTT) to the anxiolytic effects of benzodiazepines observed in rats submitted to the elevated plus-maze test (EPM) is considered to be due to the emergence of phobic states across the test/retest sessions. Antinociception is a usual component of the defense reaction. Until now, no study has examined antinociception and OTT together in freely behaving rats in the EPM. This work is a new approach looking at the sensorimotor gatings underlying OTT through the examination of the changes in reactivity to noxious stimuli during OTT development. We used the tail-flick test to assess the reactivity of rats to noxious stimulus during the effects of midazolam in test/retest sessions using two types of EPM, one with opaque (standard EPM) and another one with transparent walls (modified EPM). The authors had previously shown that this modified test caused an overall stressful situation more related to anxiety while the standard test coursed with a mixture of anxiety and high fear levels. In both plus mazes, the study was conducted in two experiments: (i) midazolam before the first trial, and (ii) midazolam before the second trial. In each experimental condition the effects of midazolam were tested under two doses (0.5 and 1.0 mg/kg) against a control group that received injections of saline. The anxiolytic effects of midazolam were more pronounced in animals tested in the modified EPM than in the standard EPM. Stressful stimuli present in both types of maze were able to elicit one-trial tolerance to midazolam on re-exposure. However, anxiolytic-insensitive behaviors in the first and the reduction in exploratory activity in the second trial are more pronounced in the standard EPM indicating that this test is more prone to transfer fear-related states across trials than the modified maze test. Antinociception is not present upon the re-exposure of rats to the EPM. These findings show that animals tested in the modified EPM showed higher sensitivity to the anxiolytic effects of midazolam than the standard EPM. Antinociception was not a concomitant of the shift in the emotional state present in the retest sessions of the EPM. These results are in agreement with the premises that repeated stressful experience leads to anxiolytic-insensitive fear state different from anxiety.


Assuntos
Analgesia , Ansiolíticos/farmacologia , Ansiedade/psicologia , Medo/efeitos dos fármacos , Medo/fisiologia , Midazolam/farmacologia , Animais , Comportamento Animal/efeitos dos fármacos , Comportamento Exploratório/efeitos dos fármacos , Masculino , Medição da Dor/efeitos dos fármacos , Estimulação Física , Ratos , Tempo de Reação/efeitos dos fármacos
16.
Surgery ; 157(5): 888-98, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25731784

RESUMO

BACKGROUND: The addition of interferon (IFN) alpha to adjuvant chemoradiotherapy regimens resulted in remarkable improvements in survival for pancreatic cancer patients. However, systemic toxicities and insufficient levels of IFN at the tumor sites have limited its widespread adoption in treatment schemes. We have previously developed an IFN-expressing conditionally replicative oncolytic adenovirus and demonstrated its therapeutic effects both in vitro and in vivo. Here, the same vectors were tested in a syngeneic and immunocompetent Syrian hamster model to better understand the roles of adenoviral replication and of the pleiotropic effects of IFN on pancreatic tumor growth suppression. METHODS: Oncolytic adenoviruses expressing human or hamster IFN were designed and generated. Viral vectors were tested in vitro to determine qualitative and quantitative cell viability, cyclooxygenase 2 (Cox2) promoter activity, and IFN production. For the in vivo studies, subcutaneous hamster pancreatic cancer tumors were treated with 1 intratumoral dose of virus. Similarly, 1 intraperitoneal dose of virus was used to prolong survival in a carcinomatosis model. RESULTS: All cell lines tested demonstrated Cox2 promoter activity. The oncolytic potential of a replication competent adenovirus expressing the IFN cytokine was clearly demonstrated. These viruses resulted in significant tumor growth suppression and survival increases compared with controls in a hamster model. CONCLUSION: The profound therapeutic potential of an IFN-expressing oncolytic adenovirus for the treatment of pancreatic cancer was demonstrated in a syngeneic Syrian hamster model. These results strongly suggest the potential application of our viruses as part of combination regimens with other therapeutics.


Assuntos
Carcinoma/terapia , Fatores Imunológicos/administração & dosagem , Interferon-alfa/administração & dosagem , Terapia Viral Oncolítica/métodos , Neoplasias Pancreáticas/terapia , Adenoviridae/metabolismo , Animais , Linhagem Celular Tumoral , Cricetinae , Feminino , Humanos , Fatores Imunológicos/metabolismo , Interferon-alfa/metabolismo , Mesocricetus , Neoplasias Experimentais
17.
Pharmacol Biochem Behav ; 79(2): 359-65, 2004 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-15501313

RESUMO

The involvement of dopaminergic mechanisms in fear and anxiety is still unclear. Behavioral studies aimed to disclose the involvement of dopamine in anxiety have reported anxiolytic-like, anxiogenic-like and lack of effects with the use of dopaminergic agonists and antagonists in animal models of anxiety. This work was an attempt to contribute to this field by providing evidence that these discrepancies may be due to the kind of aversive situation the animals experience in these models. The present study examined the effects of a dopaminergic agonist apomorphine, a dopaminergic D(1) antagonist SCH 23390 and a D(2) receptor antagonist sulpiride on the two-way avoidance response test (CAR) and on the switch-off responses to light (SOR). In both tests, learning was assessed by the performance of the animals across four blocks of 10 trials in which light was paired to footshocks (CAR) or only light was presented to the animals (SOR). The obtained data show that rats learn to make a shuttling response to avoid the shock in the CAR test and maintain a regular pace of switch-off responses in the SOR. While sulpiride and SCH 23390 administrations prevented learning of the avoidance responses, apomorphine injections produced a dose-dependent enhancement in the conditioned learning in the CAR test. The number of escape responses was unchanged by these drugs. In the light-induced switch-off test, apomorphine reduced the number of switch-off responses whereas sulpiride increased these responses. These findings suggest that the involvement of dopaminergic mechanisms in threatening situations depends on the nature of the aversive stimulus. Activation of D(1) and D(2) receptors seems to be implicated in the heightened aversiveness to conditioned stressful situations, as assessed by the CAR test. Thus, blockade of D(1) and D(2) receptors may be necessary for attenuating the aversiveness triggered by these conditioned fear stimuli. In contrast, mechanisms mediated by D(2) receptors seem to be involved in the setting up of adaptive responses to innate fear reactions. Therefore, the signal of the modulatory dopaminergic mechanisms on defensive behavior will depend on the type of emotional stimuli triggering the coping reaction.


Assuntos
Condicionamento Psicológico/fisiologia , Dopamina/fisiologia , Medo/fisiologia , Animais , Apomorfina/farmacologia , Aprendizagem da Esquiva/efeitos dos fármacos , Aprendizagem da Esquiva/fisiologia , Benzazepinas/farmacologia , Condicionamento Psicológico/efeitos dos fármacos , Agonistas de Dopamina/farmacologia , Antagonistas de Dopamina/farmacologia , Medo/efeitos dos fármacos , Masculino , Ratos , Ratos Wistar , Sulpirida/farmacologia
18.
Psychoneuroendocrinology ; 43: 114-25, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24703177

RESUMO

Despite the recognized involvement of corticosteroids in the modulation of emotional behavior, the specific role of mineralocorticoid receptors (MRs) and glucocorticoid receptors (GRs) in the expression of conditioned fear responses is still open to investigation. The present study sought to clarify the involvement of both types of corticosteroid receptors in two different brain regions--the ventral tegmental area (VTA) and the basolateral amygdala complex (BLA)--on the expression of conditioned fear. The first experiment assessed the effects of intra-VTA or intra-BLA administration of spironolactone (MR antagonist) or mifepristone (GR antagonist) on the expression of conditioned freezing to a light-CS and on motor performance in the open-field test. Intra-VTA spironolactone, but not mifepristone, attenuated the expression of the conditioned freezing response whereas intra-BLA spironolactone or mifepristone had no significant effects. These treatments did not affect motor performance in the open-field test. Since dopamine is released in the BLA from the VTA during the expression of conditioned fear, the anxiolytic-like effect of decreased corticosteroid activity in the first experiment could be associated with changes in dopaminergic neurotransmission. The second experiment, using in vivo microdialysis, investigated the role of MRs in the VTA on dopamine levels in the BLA during the expression of conditioned fear. Blocking MRs locally in the VTA with spironolactone reduced dopamine efflux in the BLA and decreased the expression of conditioned freezing in response to the CS. Taken together, the data indicate that corticosterone, acting locally on MRs in the VTA, stimulates dopamine efflux in the BLA, which facilitates the expression of conditioned freezing to a light-CS.


Assuntos
Tonsila do Cerebelo/metabolismo , Dopamina/metabolismo , Medo/fisiologia , Medo/psicologia , Receptores de Mineralocorticoides/fisiologia , Área Tegmentar Ventral/fisiologia , Animais , Condicionamento Psicológico , Sistema Hipotálamo-Hipofisário/efeitos dos fármacos , Masculino , Atividade Motora , Ratos , Ratos Wistar , Espironolactona/farmacologia , Área Tegmentar Ventral/efeitos dos fármacos
19.
Eur Neuropsychopharmacol ; 23(5): 379-89, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-22682777

RESUMO

The present study sought to determine the extent to which the combined activity of the hypothalamic-pituitary-adrenal (HPA) axis and dopaminergic systems is important for the expression of conditioned fear responses. The first experiment examined changes in plasma corticosterone concentration and the conditioned freezing response in rats treated with the dopamine D2 receptor agonist quinpirole (0.25 mg/kg), the dopamine D2 receptor antagonist sulpiride (40 mg/kg), corticosterone (3 or 6 mg/kg), or the corticosterone synthesis blocker metyrapone (30 mg/kg) and subjected to a conditioned fear test. A second experiment assessed the effects of corticosterone (3 or 6 mg/kg) and metyrapone (30 or 60 mg/kg) on fear-potentiated startle. A third experiment assessed the HPA axis modulation of conditioned fear using in vivo microdialysis targeted at dopaminergic neurotransmission in the basolateral amygdala (BLA). Quinpirole and sulpiride decreased conditioned freezing but did not affect plasma corticosterone concentration. Corticosterone and metyrapone did not affect fear-potentiated startle, but metyrapone attenuated conditioned freezing, suggesting that the expression of conditioned freezing requires HPA axis activation. Metyrapone inhibited the increase in dopamine levels in the BLA in response to the conditioned stimulus, whereas corticosterone had no significant effect. These results suggest that HPA axis activation is an initial step in an integrated neuroendocrine-neurochemical-behavioral response when the organism evaluates a threat associated with an environmental stimulus and triggers defense reactions to cope with this situation.


Assuntos
Tonsila do Cerebelo/metabolismo , Condicionamento Psicológico/fisiologia , Dopamina/metabolismo , Medo/fisiologia , Sistema Hipotálamo-Hipofisário/metabolismo , Sistema Hipófise-Suprarrenal/metabolismo , Tonsila do Cerebelo/efeitos dos fármacos , Animais , Condicionamento Psicológico/efeitos dos fármacos , Agonistas de Dopamina/farmacologia , Antagonistas de Dopamina/farmacologia , Medo/efeitos dos fármacos , Medo/psicologia , Sistema Hipotálamo-Hipofisário/efeitos dos fármacos , Masculino , Microdiálise/métodos , Sistema Hipófise-Suprarrenal/efeitos dos fármacos , Ratos , Ratos Wistar
20.
J Chem Neuroanat ; 47: 1-14, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23123956

RESUMO

Melanin-concentrating hormone (MCH) and neuropeptide glutamic acid-isoleucine (NEI) are expressed in neurons that are located mainly in the hypothalamus and project widely throughout the rat central nervous system. One of the main targets of melanin-concentrating hormone is the hippocampal formation, although the exact origin of the projections is unknown. By using injections of the retrograde tracer True Blue into the hippocampus, together with immunohistochemical analysis, we observed retrogradely labeled melanin-concentrating hormone-containing neurons in the lateral hypothalamic area, incerto-hypothalamic area, perifornical area, the periventricular nucleus of the hypothalamus, and in the internuclear area (between the dorsomedial and ventromedial nuclei of the hypothalamus), as well as a few retrogradely labeled and melanin-concentrating hormone-immunoreactive cells in the supramammillary nucleus. The afferents from the lateral hypothalamic area were confirmed using injection of the anterograde tracer biotinylated dextran amine, which enabled us to use histochemical analysis in order to visualize fibers and terminals in the hippocampal formation. In the medial septal nucleus, we found cholinergic neurons that are also putatively innervated by melanin-concentrating hormone immunoreactive fibers and project to the hippocampal formation. Finally, using two different protocols for immunoperoxidase, we were able to show GABAergic basket cells presumably innervated by melanin-concentrating hormone-immunoreactive fibers in the hippocampal formation. On the basis of the data collected herein, we hypothesize that the MCH/NEI projections from hypothalamic nuclei participate in spatial memory and learning through direct and indirect pathways. These pathways would enable the animal to organize its exploratory behavior during foraging.


Assuntos
Hipocampo/citologia , Hormônios Hipotalâmicos/metabolismo , Hipotálamo/citologia , Melaninas/metabolismo , Vias Neurais/citologia , Neurônios/citologia , Hormônios Hipofisários/metabolismo , Animais , Hipocampo/metabolismo , Hipotálamo/metabolismo , Hipotálamo/fisiologia , Imuno-Histoquímica , Masculino , Vias Neurais/metabolismo , Neurônios/metabolismo , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA