Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Molecules ; 28(13)2023 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-37446699

RESUMO

During an infection, inflammation mobilizes immune cells to eliminate the pathogen and protect the host. However, inflammation can be detrimental when exacerbated and/or chronic. The resolution phase of the inflammatory process is actively orchestrated by the specialized pro-resolving lipid mediators (SPMs), generated from omega-3 and -6 polyunsaturated fatty acids (PUFAs) that bind to different G-protein coupled receptors to exert their activity. As immunoresolvents, SPMs regulate the influx of leukocytes to the inflammatory site, reduce cytokine and chemokine levels, promote bacterial clearance, inhibit the export of viral transcripts, enhance efferocytosis, stimulate tissue healing, and lower antibiotic requirements. Metabolomic studies have evaluated SPM levels in patients and animals during infection, and temporal regulation of SPMs seems to be essential to properly coordinate a response against the microorganism. In this review, we summarize the current knowledge on SPM biosynthesis and classifications, endogenous production profiles and their effects in animal models of bacterial, viral and parasitic infections.


Assuntos
Ácidos Graxos Ômega-3 , Doenças Parasitárias , Animais , Inflamação/metabolismo , Eicosanoides , Ácidos Graxos Ômega-3/farmacologia , Ácidos Graxos Ômega-3/metabolismo , Citocinas , Mediadores da Inflamação/metabolismo
2.
Pharmacol Res ; 151: 104549, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31743775

RESUMO

We now appreciate that the mechanism of resolution depends on an active and time-dependent biosynthetic shift from pro-inflammatory to pro-resolution mediators, the so-called specialized pro-resolving lipid mediators (SPMs). These SPMs are biosynthesized from the omega-3 fatty acids arachidonic acid (AA), eicosapentaenoic acid (EPA), docosapentaenoic acid (DPA), or docosahexaenoic acid (DHA). Despite effective for a fraction of patients with rheumatic diseases and neuropathic pain, current analgesic therapies such as biological agents, opioids, corticoids, and gabapentinoids cause unwanted side effects, such as immunosuppression, addiction, or induce analgesic tolerance. A growing body of evidence demonstrates that isolated SPMs show efficacy at very low doses and have been successively used as therapeutic drugs to treat pain and infection in experimental models showing no side effects. Moreover, SPMs work as immunoresolvents and some of them present long-lasting analgesic and anti-inflammatory effects (i.e. block pain without immunosuppressive effects). In this review, we focus on how SPMs block pain, infection and neuro-immune interactions and, therefore, emerge as a new class of non-immunosuppressive and non-opioid analgesic drugs.


Assuntos
Analgésicos não Narcóticos/uso terapêutico , Anti-Inflamatórios/uso terapêutico , Ácidos Graxos Ômega-3/uso terapêutico , Dor/tratamento farmacológico , Analgésicos não Narcóticos/química , Analgésicos não Narcóticos/farmacologia , Animais , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Ácidos Graxos Ômega-3/química , Ácidos Graxos Ômega-3/farmacologia , Humanos , Inflamação/tratamento farmacológico
3.
J Nat Prod ; 83(4): 1018-1026, 2020 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-32083866

RESUMO

Gram-negative bacterial infections induce inflammation and pain. Lipopolysaccharide (LPS) is a pathogen-associated molecular pattern and the major constituent of Gram-negative bacterial cell walls. Diosmin is a citrus flavonoid with antioxidant and anti-inflammatory activities. Here we investigated the efficacy of diosmin in a nonsterile model of inflammatory pain and peritonitis induced by LPS. Diosmin reduced in a dose-dependent manner LPS-induced inflammatory mechanical hyperalgesia, thermal hyperalgesia, and neutrophil recruitment to the paw (myeloperoxidase activity). Diosmin also normalized changes in paw weight distribution assessed by static weight bearing as a nonreflexive method of pain measurement. Moreover, treatment with diosmin inhibited LPS-induced peritonitis as observed by a reduction of leukocyte recruitment and oxidative stress. Diosmin reduced LPS-induced total ROS production (DCFDA assay) and superoxide anion production (NBT assay and NBT-positive cells). We also observed a reduction of LPS-induced oxidative stress and cytokine production (IL-1ß, TNF-α, and IL-6) in the paw. Furthermore, we demonstrated that diosmin inhibited LPS-induced NF-κB activation in peritoneal exudate. Thus, we demonstrated, using a model of nonsterile inflammation induced by LPS, that diosmin is a promising molecule for the treatment of inflammation and pain.


Assuntos
Anti-Inflamatórios/farmacologia , Hiperalgesia/tratamento farmacológico , Lipopolissacarídeos/farmacologia , NF-kappa B/antagonistas & inibidores , Peritonite/tratamento farmacológico , Animais , Anti-Inflamatórios/química , Antioxidantes/farmacologia , Diosmina/efeitos adversos , Inflamação , Interleucina-1beta , Lipopolissacarídeos/química , Macrófagos/química , Macrófagos/metabolismo , Camundongos , Estrutura Molecular , NF-kappa B/química , Infiltração de Neutrófilos/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos
4.
Molecules ; 25(3)2020 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-32050623

RESUMO

Pathological pain can be initiated after inflammation and/or peripheral nerve injury. It is a consequence of the pathological functioning of the nervous system rather than only a symptom. In fact, pain is a significant social, health, and economic burden worldwide. Flavonoids are plant derivative compounds easily found in several fruits and vegetables and consumed in the daily food intake. Flavonoids vary in terms of classes, and while structurally unique, they share a basic structure formed by three rings, known as the flavan nucleus. Structural differences can be found in the pattern of substitution in one of these rings. The hydroxyl group (-OH) position in one of the rings determines the mechanisms of action of the flavonoids and reveals a complex multifunctional activity. Flavonoids have been widely used for their antioxidant, analgesic, and anti-inflammatory effects along with safe preclinical and clinical profiles. In this review, we discuss the preclinical and clinical evidence on the analgesic and anti-inflammatory proprieties of flavonoids. We also focus on how the development of formulations containing flavonoids, along with the understanding of their structure-activity relationship, can be harnessed to identify novel flavonoid-based therapies to treat pathological pain and inflammation.


Assuntos
Analgésicos/farmacologia , Anti-Inflamatórios não Esteroides/farmacologia , Flavonoides/química , Flavonoides/farmacologia , Analgésicos/química , Animais , Anti-Inflamatórios não Esteroides/química , Sistemas de Liberação de Medicamentos , Avaliação Pré-Clínica de Medicamentos , Humanos , Inflamação/tratamento farmacológico , Relação Estrutura-Atividade
5.
Inflammopharmacology ; 28(4): 979-992, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32048121

RESUMO

Arthritis can be defined as a painful musculoskeletal disorder that affects the joints. Hesperidin methyl chalcone (HMC) is a flavonoid with analgesic, anti-inflammatory, and antioxidant effects. However, its effects on a specific cell type and in the zymosan-induced inflammation are unknown. We aimed at evaluating the effects of HMC in a zymosan-induced arthritis model. A dose-response curve of HMC (10, 30, or 100 mg/kg) was performed to determine the most effective analgesic dose after intra-articular zymosan stimuli. Knee joint oedema was determined using a calliper. Leukocyte recruitment was performed by cell counting on knee joint wash as well as histopathological analysis. Oxidative stress was measured by colorimetric assays (GSH, FRAP, ABTS and NBT) and RT-qPCR (gp91phox and HO-1 mRNA expression) performed. In vitro, oxidative stress was assessed by DCFDA assay using RAW 264.7 macrophages. Cytokine production was evaluated in vivo and in vitro by ELISA. In vitro NF-κB activation was analysed by immunofluorescence. We observed HMC reduced mechanical hypersensitivity and knee joint oedema, leukocyte recruitment, and pro-inflammatory cytokine levels. We also observed a reduction in zymosan-induced oxidative stress as per increase in total antioxidant capacity and reduction in gp91phox and increase in HO-1 mRNA expression. Accordingly, total ROS production and macrophage NFκB activation were diminished. HMC interaction with NFκB p65 at Ser276 was revealed using molecular docking analysis. Thus, data presented in this work suggest the usefulness of HMC as an analgesic and anti-inflammatory in a zymosan-induced arthritis model, possibly by targeting NFκB activation in macrophages.


Assuntos
Artralgia/tratamento farmacológico , Chalconas/farmacologia , Hesperidina/análogos & derivados , Inflamação/tratamento farmacológico , Ativação de Macrófagos/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , NF-kappa B/metabolismo , Zimosan/farmacologia , Analgésicos/farmacologia , Animais , Anti-Inflamatórios/farmacologia , Antioxidantes/fisiologia , Artralgia/induzido quimicamente , Artralgia/metabolismo , Artrite Experimental/induzido quimicamente , Artrite Experimental/tratamento farmacológico , Artrite Experimental/metabolismo , Linhagem Celular , Citocinas/metabolismo , Modelos Animais de Doenças , Edema/induzido quimicamente , Edema/tratamento farmacológico , Edema/metabolismo , Hesperidina/farmacologia , Inflamação/induzido quimicamente , Inflamação/metabolismo , Macrófagos/metabolismo , Camundongos , Simulação de Acoplamento Molecular/métodos , Estresse Oxidativo/efeitos dos fármacos , Células RAW 264.7 , Transdução de Sinais/efeitos dos fármacos
6.
J Immunol ; 190(7): 3629-38, 2013 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-23460746

RESUMO

Pathogens are detected by innate immune receptors that, upon activation, orchestrate an appropriate immune response. Recent studies revealed the intracellular signaling cascades involved in the TLR-initiated immune response to Brucella abortus infection. However, no report has elucidated the role of inflammasome receptors in Brucella recognition. Therefore, we decided to investigate the function of NLRC4, NLRP3, and AIM2 in sensing Brucella. In this study, we showed that NLRC4 is not required to induce caspase-1 activation and further secretion of IL-1ß by B. abortus in macrophages. In contrast, we determined that AIM2, which senses Brucella DNA, and NLRP3 are partially required for caspase-1 activation and IL-1ß secretion. Additionally, mitochondrial reactive oxygen species induced by Brucella were implicated in IL-1ß production. Furthermore, AIM2, NLRP3, ASC, and caspase-1 knockout mice were more susceptible to B. abortus infection than were wild-type animals, suggesting that multiple ASC-dependent inflammasomes contribute to host protection against infection. This protective effect is due to the inflammatory response caused by IL-1ß and IL-18 rather than pyroptosis, because we observed augmented bacterial burden in IL-1R and IL-18 knockout mice. Finally, we determined that bacterial type IV secretion system VirB and live, but not heat-killed, Brucella are required for full inflammasome activation in macrophages during infection. Taken together, our results indicate that Brucella is sensed by ASC inflammasomes that collectively orchestrate a robust caspase-1 activation and proinflammatory response.


Assuntos
Sistemas de Secreção Bacterianos , Brucella abortus/imunologia , Brucella abortus/metabolismo , Brucelose/imunologia , Brucelose/metabolismo , Caspase 1/metabolismo , Proteínas do Citoesqueleto/metabolismo , Inflamassomos , Animais , Proteínas Reguladoras de Apoptose/metabolismo , Proteínas Adaptadoras de Sinalização CARD , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Caspase 1/genética , DNA Bacteriano/metabolismo , Proteínas de Ligação a DNA , Ativação Enzimática , Predisposição Genética para Doença , Granuloma/imunologia , Granuloma/metabolismo , Granuloma/microbiologia , Imunidade Inata , Interleucina-18/genética , Interleucina-18/metabolismo , Interleucina-1beta/metabolismo , Fígado/patologia , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos , Camundongos Knockout , Mitocôndrias/metabolismo , Fator 88 de Diferenciação Mieloide/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Receptores de Interleucina-1/genética , Receptores de Interleucina-1/metabolismo
7.
Eur J Immunol ; 43(9): 2373-85, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23716075

RESUMO

Mycobacterium avium has been reported to signal through both Toll-like receptor (TLR2) and TLR9. To investigate the role of TLR6 in innate immune responses to M. avium, TLR6, MyD88, TLR2, and TLR2/6 KO mice were infected with this pathogen. Bacterial burdens were higher in the lungs and livers of infected TLR6, TLR2, TLR2/6, and MyD88 KO mice compared with those in C57BL/6 mice, which indicates that TLR6 is required for the efficient control of M. avium infection. However, TLR6 KO spleen cells presented with normal M. avium induced IFN-γ responses as measured by ELISA and flow cytometry. In contrast, the production of IFN-γ in lung tissue was diminished in all studied KO mice. Furthermore, only MyD88 deficiency reduced granuloma areas in mouse livers. Moreover, we determined that TLR6 plays an important role in controlling bacterial growth within macrophages and in the production of TNF-α, IL-12, and IL-6 by M. avium infected DCs. Finally, the lack of TLR6 reduced activation of MAPKs and NF-κB in DCs. In summary, TLR6 is required for full resistance to M. avium and for the activation of DCs to produce proinflammatory cytokines.


Assuntos
Complexo Mycobacterium avium/imunologia , Infecção por Mycobacterium avium-intracellulare/imunologia , Receptor 6 Toll-Like/imunologia , Animais , Carga Bacteriana/imunologia , Células Cultivadas , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Ativação Enzimática , Granuloma/imunologia , Humanos , Interferon gama/biossíntese , Interferon gama/imunologia , Interleucina-12/biossíntese , Interleucina-6/biossíntese , Fígado/imunologia , Pulmão/imunologia , Macrófagos/imunologia , Macrófagos/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Fator 88 de Diferenciação Mieloide/deficiência , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/imunologia , NF-kappa B/metabolismo , Transdução de Sinais/imunologia , Baço/imunologia , Receptor 2 Toll-Like/deficiência , Receptor 2 Toll-Like/genética , Receptor 2 Toll-Like/imunologia , Receptor 6 Toll-Like/deficiência , Receptor 6 Toll-Like/genética , Fator de Necrose Tumoral alfa/biossíntese
8.
Infect Immun ; 80(12): 4298-308, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23027530

RESUMO

Interleukin-1 receptor (IL1R)-associated kinase 4 (IRAK4) is a member of the IRAK family and has an important role in inducing the production of inflammatory mediators. This kinase is downstream of MyD88, an adaptor protein essential for Toll-like receptor (TLR) function. We investigated the role of this kinase in IRAK4-deficient mice orally infected with the cystogenic ME49 strain of Toxoplasma gondii. IRAK4(-/-) mice displayed higher morbidity, tissue parasitism, and accelerated mortality than the control mice. The lymphoid follicles and germinal centers from infected IRAK4(-/-) mice were significantly smaller. We consistently found that IRAK4(-/-) mice showed a defect in splenic B cell activation and expansion as well as diminished production of gamma interferon (IFN-γ) by T lymphocytes. The myeloid compartment was also affected. Both the frequency and ability of dendritic cells (DCs) and monocytes/macrophages to produce IL-12 were significantly decreased, and resistance to infection with Toxoplasma was rescued by treating IRAK4(-/-) mice with recombinant IL-12 (rIL-12). Additionally, we report the association of IRAK4 haplotype-tagging single nucleotide polymorphisms (tag-SNPs) with congenital toxoplasmosis in infected individuals (rs1461567 and rs4251513, P < 0.023 and P < 0.045, respectively). Thus, signaling via IRAK4 is essential for the activation of innate immune cells, development of parasite-specific acquired immunity, and host resistance to infection with T. gondii.


Assuntos
Quinases Associadas a Receptores de Interleucina-1/deficiência , Toxoplasma/patogenicidade , Toxoplasmose Congênita/genética , Toxoplasmose/imunologia , Adulto , Animais , Linfócitos B/imunologia , Criança , Pré-Escolar , Suscetibilidade a Doenças , Feminino , Genótipo , Humanos , Imunidade Inata , Quinases Associadas a Receptores de Interleucina-1/genética , Ativação Linfocitária , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células Th1/imunologia , Toxoplasma/imunologia , Toxoplasmose/genética , Toxoplasmose/parasitologia , Toxoplasmose/patologia , Toxoplasmose Congênita/imunologia , Toxoplasmose Congênita/parasitologia , Toxoplasmose Congênita/patologia
9.
Clin Dev Immunol ; 2012: 861426, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22203860

RESUMO

Nucleotide-binding oligomerization domain proteins (NODs) are modular cytoplasmic proteins implicated in the recognition of peptidoglycan-derived molecules. Further, several in vivo studies have demonstrated a role for Nod1 and Nod2 in host defense against bacterial pathogens. Here, we demonstrated that macrophages from NOD1-, NOD2-, and Rip2-deficient mice produced lower levels of TNF-α following infection with live Brucella abortus compared to wild-type mice. Similar reduction on cytokine synthesis was not observed for IL-12 and IL-6. However, NOD1, NOD2, and Rip2 knockout mice were no more susceptible to infection with virulent B. abortus than wild-type mice. Additionally, spleen cells from NOD1-, NOD2-, and Rip2-deficient mice showed unaltered production of IFN-γ compared to C57BL/6 mice. Taken together, this study demonstrates that NOD1, NOD2 and Rip2 are dispensable for the control of B. abortus during in vivo infection.


Assuntos
Brucella abortus , Brucelose/imunologia , Proteína Adaptadora de Sinalização NOD1/genética , Proteína Adaptadora de Sinalização NOD2/genética , Animais , Brucelose/genética , Interferon gama/biossíntese , Interferon gama/imunologia , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteína Adaptadora de Sinalização NOD1/metabolismo , Proteína Adaptadora de Sinalização NOD2/metabolismo , Proteína Serina-Treonina Quinase 2 de Interação com Receptor , Proteína Serina-Treonina Quinases de Interação com Receptores/genética , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Baço/imunologia , Baço/metabolismo , Fator de Necrose Tumoral alfa/biossíntese , Fator de Necrose Tumoral alfa/imunologia
10.
Clin Dev Immunol ; 2012: 589494, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22194770

RESUMO

Brucella abortus is a facultative intracellular bacterial pathogen that causes abortion in domestic animals and undulant fever in humans. IFN-γ, IL-12, and CD8+ T lymphocytes are important components of host immune responses against B. abortus. Herein, IFN-γ and IL-12/ß2-microglobulin (ß2-m) knockout mice were used to determine whether CD8+ T cells and IL-12-dependent IFN-γ deficiency would be more critical to control B. abortus infection compared to the lack of endogenous IFN-γ. At 1 week after infection, IFN-γ KO and IL-12/ß2-m KO mice showed increased numbers of bacterial load in spleens; however, at 3 weeks postinfection (p.i.), only IFN-γ KO succumbed to Brucella. All IFN-γ KO had died at 16 days p.i. whereas death within the IL-12/ß2-m KO group was delayed and occurred at 32 days until 47 days postinfection. Susceptibility of IL-12/ß2-m KO animals to Brucella was associated to undetectable levels of IFN-γ in mouse splenocytes and inability of these cells to lyse Brucella-infected macrophages. However, the lack of endogenous IFN-γ was found to be more important to control brucellosis than CD8+ T cells and IL-12-dependent IFN-γ deficiencies.


Assuntos
Brucella abortus/imunologia , Brucelose/genética , Brucelose/imunologia , Interferon gama/genética , Interleucina-12/genética , Microglobulina beta-2/genética , Animais , Predisposição Genética para Doença , Humanos , Interferon-alfa/biossíntese , Interferon gama/imunologia , Interleucina-12/imunologia , Macrófagos/imunologia , Macrófagos/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Baço/imunologia , Baço/microbiologia , Microglobulina beta-2/imunologia
11.
Percept Mot Skills ; 115(2): 360-9, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23265002

RESUMO

The interaction between the amount of practice and frequency of Knowledge of Results (KR) was investigated in a timing skill. In the acquisition phase the task involved 90 trials of releasing a knob and transporting three tennis balls from three near recipients to three far ones in a specific sequence and target time. The retention test performed 24 hr. later had the same sequence of transport but a new target time was required. In both phases, absolute error and standard deviation plus constant error was measured. The five groups differed in relation to frequency of KR and amount of practice. The results showed that intermediate frequencies as well as higher frequencies of KR elicited better performance during the retention test.


Assuntos
Conhecimento Psicológico de Resultados , Aprendizagem/fisiologia , Destreza Motora/fisiologia , Desempenho Psicomotor/fisiologia , Adulto , Análise de Variância , Feminino , Humanos , Masculino , Prática Psicológica , Tempo de Reação/fisiologia , Retenção Psicológica/fisiologia , Estudantes , Fatores de Tempo , Adulto Jovem
12.
J Ethnopharmacol ; 283: 114708, 2022 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-34619320

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Sphagneticola trilobata (L.) Pruski is used in traditional medicine in Brazil for inflammatory diseases treatment including asthma. The diterpene kaurenoic acid (KA) is one of its active compounds, but whether KA activity could explain the traditional use of S. trilobata in asthma is unknown. AIM: Investigate KA effect and mechanisms in asthma. METHODS: Experimental asthma was induced by ovalbumin immunization and challenge in male Swiss mice. KA (0.1-10 mg/kg, gavage) was administered 1 h before the ovalbumin challenge. Total leukocytes, eosinophil, and mast cell were counted in bronchoalveolar lavage fluid (BALF), and lung histopathology was performed. Lung mRNA expression of Th2 and regulatory T cells markers, and BALF type 2 cytokine production were quantitated. NFκB activation and oxidative stress-related components in pulmonary tissue were measured. RESULTS: KA inhibited the migration of total leukocytes and eosinophils to BALF, reduced lung histopathology (inflammatory cells and mast cells), mRNA expression of IL-33/ST2, STAT6/GATA-3 and NFκB activation in the lung, and reduced IL-33, IL-4, IL-5 production in the BALF. KA also reduced the mRNA expression of iNOS and gp91phox, and superoxide anion production accompanied by the induction of Nrf2, HO-1 and NQO1 mRNA expression, thus, exerting an antioxidant effect. Finally, KA induced nTreg-like and Tr1-like, but not Th3-like markers of suppressive T cell phenotypes in the lung tissue. CONCLUSION: KA prevents antigen-induced asthma by down-regulating Th2 and NFκB/cytokine-related pathways, and up-regulating Nrf2 and regulatory T cells' markers. Thus, explaining the ethnopharmacological use of S. trilobata for the treatment of lung inflammatory diseases.


Assuntos
Asteraceae/química , Asma/tratamento farmacológico , Citocinas/metabolismo , Diterpenos/farmacologia , Animais , Modelos Animais de Doenças , Diterpenos/administração & dosagem , Diterpenos/isolamento & purificação , Relação Dose-Resposta a Droga , Fator de Transcrição GATA3/metabolismo , Masculino , Camundongos , Fator 2 Relacionado a NF-E2/metabolismo , NF-kappa B/metabolismo , Ovalbumina/imunologia , Fator de Transcrição STAT6/metabolismo , Células Th2/imunologia
13.
Infect Immun ; 79(11): 4688-95, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21844234

RESUMO

Brucella abortus is a facultative intracellular bacterial pathogen that causes abortion in domestic animals and undulant fever in humans. Recent studies have revealed that Toll-like receptor (TLR)-initiated immune response to Brucella spp. depends on myeloid differentiation factor 88 (MyD88) signaling. Therefore, we decided to study the role of the interleukin-1 receptor-associated kinase 4 (IRAK-4) in host innate immune response against B. abortus. After Brucella infection, it was shown that the number of CFU in IRAK-4(-/-) mice was high compared to that in IRAK-4(+/-) animals only at 1 week postinfection. At 3 and 6 weeks postinfection, IRAK-4(-/-) mice were able to control the infection similarly to heterozygous animals. Furthermore, the type 1 cytokine profile was evaluated. IRAK-4(-/-) mice showed lower production of systemic interleukin-12 (IL-12) and gamma interferon (IFN-γ). Additionally, a reduced percentage of CD4(+) and CD8(+) T cells expressing IFN-γ was observed compared to IRAK-4(+/-). Further, the production of IL-12 and tumor necrosis factor alpha (TNF-α) by macrophages and dendritic cells from IRAK-4(-/-) mice was abolished at 24 h after stimulation with B. abortus. To investigate the role of IRAK-4 in mitogen-activated protein kinase (MAPK) and NF-κB signaling pathways, macrophages were stimulated with B. abortus, and the signaling components were analyzed by protein phosphorylation. Extracellular signal-regulated kinase 1 (ERK1) and ERK2 and p38 as well as p65 NF-κB phosphorylation was profoundly impaired in IRAK-4(-/-) and MyD88(-/-) macrophages activated by Brucella. In summary, the results shown in this study demonstrated that IRAK-4 is critical to trigger the initial immune response against B. abortus but not at later phases of infection.


Assuntos
Brucella abortus , Brucelose/imunologia , Quinases Associadas a Receptores de Interleucina-1/metabolismo , Animais , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Citocinas/genética , Citocinas/metabolismo , Células Dendríticas/metabolismo , Predisposição Genética para Doença , Interações Hospedeiro-Patógeno , Inflamação/metabolismo , Quinases Associadas a Receptores de Interleucina-1/genética , Macrófagos/metabolismo , Camundongos , Camundongos Knockout
14.
Infect Immun ; 79(4): 1638-46, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21300776

RESUMO

To investigate the role of Toll-like receptor 9 (TLR9) in innate immunity to Mycobacterium avium, TLR9, TLR2, and MyD88 knockout (KO) mice were infected with this bacterium. Bacterial burdens were higher in the spleens, livers, and lungs of infected TLR9 KO mice than in those of C57BL/6 mice, indicating that TLR9 is required for efficient control of M. avium infection. However, TLR9 KO or TLR2 KO spleen cells displayed normal M. avium-induced tumor necrosis factor alpha (TNF-α) and gamma interferon (IFN-γ) responses. This finding was confirmed by determining the number of splenic CD4(+) T cells producing IFN-γ by flow cytometry. Furthermore, TLR2 and MyD88, but not TLR9, played a major role in interleukin-12 and TNF-α production by M. avium-infected macrophages and dendritic cells (DCs). We also found that major histocompatibility complex class II molecule expression on DCs is regulated by TLR2 and MyD88 signaling but not by TLR9. Finally, lack of TLR9, TLR2, or MyD88 reduced the numbers of macrophages, epithelioid cells, and lymphocytes in M. avium-induced granulomas but only MyD88 deficiency affected the number of liver granulomas. In summary, our data demonstrated that the involvement of TLR9 in the control of M. avium infection is not related to the induction of Th1 responses.


Assuntos
Células Th1/imunologia , Receptor Toll-Like 9/imunologia , Tuberculose/imunologia , Animais , Separação Celular , Células Dendríticas/imunologia , Células Dendríticas/microbiologia , Citometria de Fluxo , Antígenos de Histocompatibilidade Classe II/biossíntese , Antígenos de Histocompatibilidade Classe II/imunologia , Ativação Linfocitária/imunologia , Macrófagos/imunologia , Macrófagos/metabolismo , Macrófagos/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mycobacterium avium/imunologia , Fator 88 de Diferenciação Mieloide/imunologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Células Th1/metabolismo , Receptor 2 Toll-Like/imunologia , Receptor Toll-Like 9/metabolismo , Tuberculose/patologia , Tuberculose/veterinária
15.
Immunol Lett ; 229: 32-43, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33248166

RESUMO

Clinically, a variety of micro-organisms cause painful infections. Before seen as bystanders in the context of infections, recent studies have demonstrated that, as immune cells, nociceptors can sense pathogen-derived products. Nociceptors and immune cells, therefore, have evolved to communicate with each other to control inflammatory and host responses against pathogens in a complementary way. This interaction is named as neuroimmune communication (or axon-axon immune reflex) and initiates after the release of neuropeptides, such as CGRP and VIP by neurons. By this neurogenic response, nociceptors orchestrate the activity of innate and adaptive immune cells in a context-dependent manner. In this review, we focus on how nociceptors sense pathogen-derived products to shape the host response. We also highlight the new concept involving the resolution of inflammation, which is related to an active and time-dependent biosynthetic shift from pro-inflammatory to pro-resolution mediators, the so-called specialized pro-resolving lipid mediators (SPMs). At very low doses, SPMs act on specific receptors to silence nociceptors, limit pain and neurogenic responses, and resolve infections. Furthermore, stimulation of the vagus nerve induces SPMs production to regulate immune responses in infections. Therefore, harnessing the current understanding of neuro-immune communication and neurogenic responses might provide the bases for reprogramming host responses against infections through well balanced and effective immune response and inflammation resolution.


Assuntos
Infecções/etiologia , Infecções/metabolismo , Neuroimunomodulação , Dor/etiologia , Animais , Biomarcadores , Comunicação Celular , Suscetibilidade a Doenças/imunologia , Metabolismo Energético , Interações Hospedeiro-Parasita/imunologia , Interações Hospedeiro-Patógeno/imunologia , Humanos , Sistema Imunitário/imunologia , Sistema Imunitário/inervação , Sistema Imunitário/metabolismo , Infecções/complicações , Inflamação/complicações , Inflamação/etiologia , Inflamação/metabolismo , Mediadores da Inflamação/metabolismo , Metabolismo dos Lipídeos , Dor/diagnóstico , Dor/metabolismo , Células Receptoras Sensoriais/imunologia , Células Receptoras Sensoriais/metabolismo
16.
JIMD Rep ; 62(1): 49-55, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34765398

RESUMO

Adenosine kinase (ADK) deficiency is a very rare inborn error of methionine and adenosine metabolism. It is characterized by developmental delay, hypotonia, epilepsy, facial dysmorphism, failure to thrive, transient liver dysfunction with cholestasis, recurrent hypoglycemia, and cardiac defects. Only 26 cases (16 families) of ADK deficiency have been published since its identification in 2011. Vascular abnormalities in cervical arteries and cerebral stroke have never been reported in this condition. Here, we describe two patients with ADK deficiency and vascular tortuosity leading to stroke in one of them. ADK deficiency is a rare inborn error of methionine metabolism with a complex phenotype that might be associated with cerebrovascular abnormalities and stroke.

17.
Front Pharmacol ; 12: 734091, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35069187

RESUMO

Unaccustomed exercise involving eccentric contractions, high intensity, or long duration are recognized to induce delayed-onset muscle soreness (DOMS). Myocyte damage and inflammation in affected peripheral tissues contribute to sensitize muscle nociceptors leading to muscle pain. However, despite the essential role of the spinal cord in the regulation of pain, spinal cord neuroinflammatory mechanisms in intense swimming-induced DOMS remain to be investigated. We hypothesized that spinal cord neuroinflammation contributes to DOMS. C57BL/6 mice swam for 2 h to induce DOMS, and nociceptive spinal cord mechanisms were evaluated. DOMS triggered the activation of astrocytes and microglia in the spinal cord 24 h after exercise compared to the sham group. DOMS and DOMS-induced spinal cord nuclear factor κB (NFκB) activation were reduced by intrathecal treatments with glial inhibitors (fluorocitrate, α-aminoadipate, and minocycline) and NFκB inhibitor [pyrrolidine dithiocarbamate (PDTC)]. Moreover, DOMS was also reduced by intrathecal treatments targeting C-X3-C motif chemokine ligand 1 (CX3CL1), tumor necrosis factor (TNF)-α, and interleukin (IL)-1ß or with recombinant IL-10. In agreement, DOMS induced the mRNA and protein expressions of CX3CR1, TNF-α, IL-1ß, IL-10, c-Fos, and oxidative stress in the spinal cord. All these immune and cellular alterations triggered by DOMS were amenable by intrathecal treatments with glial and NFκB inhibitors. These results support a role for spinal cord glial cells, via NFκB, cytokines/chemokines, and oxidative stress, in DOMS. Thus, unveiling neuroinflammatory mechanisms by which unaccustomed exercise induces central sensitization and consequently DOMS.

18.
J Ethnopharmacol ; 273: 113980, 2021 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-33652112

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Sphagneticola trilobata (L.) Pruski is a plant species belonging to the Asteraceae family. Kaurenoid acid (KA) is a diterpene metabolite and one of the active ingredients of Sphagneticola trilobata (L.) Pruski. Extracts containing KA are used in traditional medicine to treat pain, inflammation, and infection. AIM: The goal of the present study was to investigate the in vivo effects of KA (1-10 mg/kg, per oral gavage) upon LPS inoculation in mice by intraperitoneal (i.p.) or intraplantar (i.pl.; subcutaneous plantar injection) routes at the dose of 200 ng (200 µL or 25 µL, respectively). METHODS: In LPS paw inflammation, mechanical and thermal hyperalgesia MPO activity and oxidative imbalance (TBARS, GSH, ABTS and FRAP assays) were evaluated. In LPS peritonitis we evaluated leukocyte migration, cytokine production, oxidative stress, and NF-κB activation. RESULTS: KA inhibited LPS-induced mechanical and thermal hyperalgesia, MPO activity and modulated redox status in the mice paw. Pre- and post-treatment with KA inhibited migration of neutrophils and monocytes in LPS peritonitis. KA inhibited the pro-inflammatory/hyperalgesic cytokine (e.g., TNF-α, IL-1ß and IL-33) production while enhanced anti-inflammatory/analgesic cytokine IL-10 in peritoneal cavity. In agreement with the effect of KA over pro-inflammatory cytokines it inhibited oxidative stress (total ROS, superoxide production and superoxide positive cells) and NF-κB activation during peritonitis. CONCLUSION: KA efficiently dampens LPS-induced peritonitis and hyperalgesia in vivo, suggesting it as a suitable candidate to control excessive inflammation and pain during gram-negative bacterial infections and bringing mechanistic explanation to the ethnopharmacological application of Sphagneticola trilobata (L.) Pruski in inflammation and infection.


Assuntos
Analgésicos/uso terapêutico , Asteraceae/química , Diterpenos/uso terapêutico , Lipopolissacarídeos/toxicidade , Peritonite/induzido quimicamente , Analgésicos/química , Animais , Diterpenos/química , Regulação da Expressão Gênica/efeitos dos fármacos , Hiperalgesia/tratamento farmacológico , Peroxidação de Lipídeos , Masculino , Camundongos , Estrutura Molecular , NF-kappa B/genética , NF-kappa B/metabolismo , Dor/tratamento farmacológico , Peritonite/tratamento farmacológico , Peroxidase/metabolismo
19.
Anticancer Res ; 40(9): 5151-5158, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32878803

RESUMO

BACKGROUND/AIM: Magnetic stimulation is used in the treatment of a diversity of diseases, but a complete understanding of the underlying mechanisms of action requires further investigation. We examined the effect of static magnetic stimulation (SMS) in different cell lines. MATERIALS AND METHODS: A culture plate holder with attached NeFeB magnets was developed. Different magnetic field intensities and periods were tested in tumoral and non-tumoral cell lines. To verify the cellular responses to SMS, cell viability, cell death, cell cycle and BDNF expression were evaluated. RESULTS: Exposure of SH-SY5Y cells to SMS for 24 hours led to a decrease in cell viability. Analysis 24 h after stimulation revealed a decrease in apoptotic and double-positive cells, associated with an increase in the number of necrotic cells. CONCLUSION: The effects of SMS on cell viability are cell type-specific, inducing a decrease in cell viability in SH-SY5Y cells. This suggests that SMS may be a potential tool in the treatment of neuronal tumors.


Assuntos
Sobrevivência Celular/efeitos da radiação , Fenômenos Magnéticos , Apoptose/efeitos da radiação , Fator Neurotrófico Derivado do Encéfalo/genética , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Ciclo Celular/efeitos da radiação , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica/efeitos da radiação , Humanos , Neuroblastoma/genética , Neuroblastoma/metabolismo , Especificidade de Órgãos/efeitos da radiação
20.
Mol Cell Endocrinol ; 505: 110729, 2020 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-31972330

RESUMO

The aim of this study was to investigate whether co-culture of human islets with adipose-derived stem cells (ASCs) can improve islet quality and to evaluate which factors play a role in the protective effect of ASCs against islet dysfunction. Islets and ASCs were cultured in three experimental groups for 24 h, 48 h, and 72 h: 1) indirect co-culture of islets with ASC monolayer (Islets/ASCs); 2) islets alone; and 3) ASCs alone. Co-culture with ASCs improved islet viability and function in all culture time-points analyzed. VEGFA, HGF, IL6, IL8, IL10, CCL2, IL1B, and TNF protein levels were increased in supernatants of islet/ASC group compared to islets alone, mainly after 24 h. Moreover, VEGFA, IL6, CCL2, HIF1A, XIAP, CHOP, and NFKBIA genes were differentially expressed in islets from the co-culture condition compared to islets alone. In conclusion, co-culture of islets with ASCs promotes improvements in islet quality.


Assuntos
Tecido Adiposo/citologia , Ilhotas Pancreáticas/citologia , Células-Tronco/citologia , Apoptose/efeitos dos fármacos , Apoptose/genética , Quimiocinas/metabolismo , Técnicas de Cocultura , Meios de Cultura , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Estresse do Retículo Endoplasmático/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Inflamação/genética , Mediadores da Inflamação/metabolismo , Insulina/farmacologia , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Neovascularização Fisiológica/efeitos dos fármacos , Neovascularização Fisiológica/genética , Células-Tronco/efeitos dos fármacos , Fatores de Tempo , Sobrevivência de Tecidos/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA