Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Fish Shellfish Immunol ; 93: 940-948, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31419531

RESUMO

The Brown Ring Disease is an infection caused by the bacterium Vibrio tapetis on the Manila clam Ruditapes philippinarum. The process of infection, in the extrapallial fluids (EPFs) of clams, involves alteration of immune functions, in particular on hemocytes which are the cells responsible of phagocytosis. Disorganization of the actin-cytoskeleton in infected clams is a part of what leads to this alteration. This study is the first transcriptomic approach based on collection of extrapallial fluids on living animals experimentally infected by V. tapetis. We performed differential gene expression analysis of EPFs in two experimental treatments (healthy-against infected-clams by V. tapetis), and showed the deregulation of 135 genes. In infected clams, a downregulation of transcripts implied in immune functions (lysosomal activity and complement- and lectin-dependent PRR pathways) was observed during infection. We also showed a deregulation of transcripts encoding proteins involved in the actin cytoskeleton organization such as an overexpression of ß12-Thymosin (which is an actin sequestration protein) or a downregulation of proteins that closely interact with capping proteins such as Coactosin, that counteract action of capping proteins, or Profilin. We validated these transcriptomic results by cellular physiological analyses that showed a decrease of the lysosome amounts and the disorganization of actin cytoskeleton in infected hemocytes.


Assuntos
Bivalves/imunologia , Citoesqueleto/microbiologia , Imunidade Inata/genética , Transcriptoma/imunologia , Vibrio/fisiologia , Animais , Bivalves/genética , Perfilação da Expressão Gênica
2.
Curr Microbiol ; 76(6): 687-697, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30953134

RESUMO

Although some previous studies have described the microbial diversity of termite in Brazil, the lack of studies about this subject is still evident. In the present study, we described by whole genome sequencing, the gut microbiota of seven species of termites (Termitidae) with different feeding habits from four Brazilian locations. For the litter species, the most abundant bacterial phylum was Firmicutes, where Cornitermes cumulans and Syntermes dirus (Syntermitinae) were identified. For the humus species, the most abundant bacterial phylum was Proteobacteria where three species were studied: Cyrilliotermes strictinasus (Syntermitinae), Grigiotermes bequaerti (Apicotermitinae), and Orthognathotermes mirim (Termitinae). For the wood termites, Firmicutes and Spirochaetes were the most abundant phyla, respectively, where two species were identified: Nasutitermes aquilinus and Nasutitermes jaraguae (Nasutitermitinae). The gut microbiota of all four examined subfamilies shared a conserved functional and carbohydrate-active enzyme profile and specialized in cellulose and chitin degradation. Taken together, these results provide insight into the partnerships between termite and microbes that permit the use of refractory energy sources.


Assuntos
Bactérias/classificação , Bactérias/genética , Microbioma Gastrointestinal , Isópteros/microbiologia , Animais , Biodiversidade , Brasil , Comportamento Alimentar , Isópteros/fisiologia , Metagenômica
3.
Metab Eng ; 49: 1-12, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30016654

RESUMO

Triterpene cyclases catalyze the first committed step in triterpene biosynthesis, by forming mono- to pentacyclic backbone structures from oxygenated C30 isoprenoid precursors. Squalene epoxidase precedes this cyclization by providing the oxygenated and activated substrate for triterpene biosynthesis. Three squalene epoxidases from Cucurbita pepo (CpSEs) were isolated and shown to have evolved under purifying selection with signs of sites under positive selection in their N- and C-termini. They all localize to the Endoplasmic Reticulum (ER) and produce 2,3-oxidosqualene and 2,3:22,23-dioxidosqualene when expressed in a yeast erg1 (squalene epoxidase) erg7 (lanosterol synthase) double mutant. Co-expression of the CpSEs with four different triterpene cyclases, either transiently in Nicotiana benthamiana or constitutively in yeast, showed that CpSEs boost triterpene production. CpSE2 was the best performing in this regard, which could reflect either increased substrate production or superior channeling of the substrate to the triterpene cyclases. Fluorescence Lifetime Imaging Microscopy (FLIM) analysis with C. pepo cucurbitadienol synthase (CpCPQ) revealed a specific interaction with CpSE2 but not with the other CpSEs. When CpSE2 was transformed into C. pepo hairy root lines, cucurbitacin E production was increased two folds compared to empty vector control lines. This study provides new insight into the importance of SEs in triterpene biosynthesis, suggesting that they may facilitate substrate channeling, and demonstrates that SE overexpression is a new tool for increasing triterpene production in plants and yeast.


Assuntos
Citrullus/genética , Cucurbita/genética , Liases Intramoleculares , Microrganismos Geneticamente Modificados , Nicotiana , Proteínas de Plantas , Plantas Geneticamente Modificadas , Esqualeno Mono-Oxigenase , Triterpenos/metabolismo , Citrullus/enzimologia , Cucurbita/enzimologia , Expressão Gênica , Liases Intramoleculares/biossíntese , Liases Intramoleculares/genética , Microrganismos Geneticamente Modificados/genética , Microrganismos Geneticamente Modificados/metabolismo , Proteínas de Plantas/biossíntese , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Esqualeno Mono-Oxigenase/biossíntese , Esqualeno Mono-Oxigenase/genética , Nicotiana/genética , Nicotiana/metabolismo
4.
Microb Ecol ; 76(3): 825-838, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29546438

RESUMO

Marine sponge holobionts harbor complex microbial communities whose members may be the true producers of secondary metabolites accumulated by sponges. Bromopyrrole alkaloids constitute a typical class of secondary metabolites isolated from sponges that very often display biological activities. Bromine incorporation into secondary metabolites can be catalyzed by either halogenases or haloperoxidases. The diversity of the metagenomes of sponge holobiont species containing bromopyrrole alkaloids (Agelas spp. and Tedania brasiliensis) as well as holobionts devoid of bromopyrrole alkaloids spanning in a vast biogeographic region (approx. Seven thousand km) was studied. The origin and specificity of the detected halogenases was also investigated. The holobionts Agelas spp. and T. brasiliensis did not share microbial halogenases, suggesting a species-specific pattern. Bacteria of diverse phylogenetic origins encoding halogenase genes were found to be more abundant in bromopyrrole-containing sponges. The sponge holobionts (e.g., Agelas spp.) with the greatest number of sequences related to clustered, interspaced, short, palindromic repeats (CRISPRs) exhibited the fewest phage halogenases, suggesting a possible mechanism of protection from phage infection by the sponge host. This study highlights the potential of phages to transport halogenases horizontally across host sponges, particularly in more permissive holobiont hosts, such as Tedania spp.


Assuntos
Alcaloides/metabolismo , Bactérias/enzimologia , Proteínas de Bactérias/genética , Biodiversidade , Hidrolases/genética , Poríferos/microbiologia , Animais , Bactérias/genética , Bactérias/isolamento & purificação , Bactérias/metabolismo , Proteínas de Bactérias/metabolismo , Bromo/metabolismo , Transferência Genética Horizontal , Hidrolases/metabolismo , Filogenia , Poríferos/química , Metabolismo Secundário
5.
Antonie Van Leeuwenhoek ; 109(3): 431-8, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26786501

RESUMO

The taxonomic position of strains Ab112(T) (CBAS 572(T)) and Ab227_MC (CBAS 573) was evaluated by means of genomic taxonomy. These isolates represent the dominant flora cultured from the healthy marine sponge Arenosclera brasiliensis, endemic to Rio de Janeiro. Strains CBAS 572(T) and CBAS 573 shared >98 % 16S rRNA sequence identity with Endozoicomonas numazuensis and Endozoicomonas montiporae. In silico DNA-DNA Hybridization, i.e. genome-to-genome distance (GGD), amino acid identity (AAI) and average nucleotide identity (ANI) further showed that these strains had <70 %, at maximum 71.1 and 78 % of identity, respectively, to their closest neighbours E. numazuensis and E. montiporae. The DNA G+C content of CBAS 572(T) and CBAS 573 were 47.6 and 47.7 mol%, respectively. Phenotypic and chemotaxonomic features also allowed a separation from the type strains of their phylogenetic neighbours. Useful phenotypic features for discriminating CBAS 572(T) and CBAS 573 from E. numazuensis and E. montiporae species include C8 esterase, N-acetyl-ß-glucosaminidase, citric acid, uridine and siderophore. The species Endozoicomonas arenosclerae sp. nov. is proposed to harbour the new isolates. The type strain is CBAS 572(T) (=Ab112(T)).


Assuntos
Código de Barras de DNA Taxonômico , Gammaproteobacteria/classificação , Gammaproteobacteria/genética , Genoma Bacteriano , Técnicas de Tipagem Bacteriana , Composição de Bases , Gammaproteobacteria/química , Estudos de Associação Genética , Genômica/métodos , Sequenciamento de Nucleotídeos em Larga Escala , Fenótipo , Filogenia , RNA Ribossômico 16S/genética
6.
Mar Drugs ; 13(2): 879-902, 2015 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-25675000

RESUMO

The red seaweeds belonging to the genus Laurencia are well known as halogenated secondary metabolites producers, mainly terpenoids and acetogennins. Several of these chemicals exhibit important ecological roles and biotechnological applications. However, knowledge regarding the genes involved in the biosynthesis of these compounds is still very limited. We detected 20 different genes involved in the biosynthesis of terpenoid precursors, and 21 different genes coding for terpene synthases that are responsible for the chemical modifications of the terpenoid precursors, resulting in a high diversity of carbon chemical skeletons. In addition, we demonstrate through molecular and cytochemical approaches the occurrence of the mevalonate pathway involved in the biosynthesis of terpenes in L. dendroidea. This is the first report on terpene synthase genes in seaweeds, enabling further studies on possible heterologous biosynthesis of terpenes from L. dendroidea exhibiting ecological or biotechnological interest.


Assuntos
Laurencia/química , Terpenos/química , Alquil e Aril Transferases/genética , Alquil e Aril Transferases/metabolismo , Vias Biossintéticas , Configuração de Carboidratos , DNA Complementar/biossíntese , DNA Complementar/genética , Laurencia/enzimologia , Laurencia/genética , Ácido Mevalônico/metabolismo , Modelos Moleculares , Terpenos/metabolismo , Transcriptoma/genética
7.
Mar Pollut Bull ; 192: 115081, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37236096

RESUMO

In the last decade, several methods were applied to monitor the impact of oil pollution on marine organisms. Recent studies showed an eminent need to standardize these methods to produce comparable results. Here we present the first thorough systematic review of the literature on oil pollution monitoring methods in the last decade. The literature search resulted on 390 selected original articles, categorized according to the analytical method employed. Except for Ecosystem-level analyses, most methods are used on short-term studies. The combination of Biomarker and Bioaccumulation analysis is the most frequently adopted strategy for oil pollution biomonitoring, followed by Omic analyses. This systematic review describes the principles of the most frequently used monitoring tools, presents their advantages, limitations, and main findings and, as such, could be used as a guideline for future researches on the field.


Assuntos
Poluição por Petróleo , Monitoramento Biológico , Ecossistema , Monitoramento Ambiental/métodos , Organismos Aquáticos
8.
Cells ; 12(18)2023 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-37759481

RESUMO

Laurencia seaweed species synthesize a broad range of secondary metabolites, mainly terpenes (e.g., elatol), exhibiting diverse ecological roles, such as defense against fouling and herbivores. Recently, an intricate cellular machinery was described concerning terpenes biosynthetic pathways, storage inside corps en cerise (CC), and regulated exocytosis in these species. But for seaweeds in general, the proteins involved in transmembrane transport of secondary metabolites remain unknown. Assays with Rhodamine-123 and cyclosporine A (CSA) revealed the presence of ABC transporters in CC membrane of Laurencia dendroidea. In vivo incubation assays with CSA resulted in CC morphological changes, reduced intracellular elatol concentrations, and increased biofouling cover on the seaweed surface. Cultivation assays in the presence of a marine pathogenic bacteria induced the expression of ABC proteins belonging to the subfamilies ABCB, ABCD, ABCF, and ABCG. The latter subfamily is known to be associated with the transport of plant terpenes. Our results shed new light on the role of ABC proteins in key mechanisms of the defensive system in seaweeds against fouling and herbivory.


Assuntos
Transportadores de Cassetes de Ligação de ATP , Alga Marinha , Metabolismo Secundário , Ciclosporina , Terpenos
9.
BMC Genomics ; 13: 487, 2012 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-22985125

RESUMO

BACKGROUND: Seaweeds of the Laurencia genus have a broad geographic distribution and are largely recognized as important sources of secondary metabolites, mainly halogenated compounds exhibiting diverse potential pharmacological activities and relevant ecological role as anti-epibiosis. Host-microbe interaction is a driving force for co-evolution in the marine environment, but molecular studies of seaweed-associated microbial communities are still rare. Despite the large amount of research describing the chemical compositions of Laurencia species, the genetic knowledge regarding this genus is currently restricted to taxonomic markers and general genome features. In this work we analyze the transcriptomic profile of L. dendroidea J. Agardh, unveil the genes involved on the biosynthesis of terpenoid compounds in this seaweed and explore the interactions between this host and its associated microbiome. RESULTS: A total of 6 transcriptomes were obtained from specimens of L. dendroidea sampled in three different coastal locations of the Rio de Janeiro state. Functional annotations revealed predominantly basic cellular metabolic pathways. Bacteria was the dominant active group in the microbiome of L. dendroidea, standing out nitrogen fixing Cyanobacteria and aerobic heterotrophic Proteobacteria. The analysis of the relative contribution of each domain highlighted bacterial features related to glycolysis, lipid and polysaccharide breakdown, and also recognition of seaweed surface and establishment of biofilm. Eukaryotic transcripts, on the other hand, were associated with photosynthesis, synthesis of carbohydrate reserves, and defense mechanisms, including the biosynthesis of terpenoids through the mevalonate-independent pathway. CONCLUSIONS: This work describes the first transcriptomic profile of the red seaweed L. dendroidea, increasing the knowledge about ESTs from the Florideophyceae algal class. Our data suggest an important role for L. dendroidea in the primary production of the holobiont and the role of Bacteria as consumers of organic matter and possibly also as nitrogen source. Furthermore, this seaweed expressed sequences related to terpene biosynthesis, including the complete mevalonate-independent pathway, which offers new possibilities for biotechnological applications using secondary metabolites from L. dendroidea.


Assuntos
Cianobactérias/genética , Laurencia/genética , Metagenoma , Proteobactérias/genética , Alga Marinha/genética , Transcriptoma , Cianobactérias/metabolismo , DNA Complementar/biossíntese , Etiquetas de Sequências Expressas , Laurencia/metabolismo , Laurencia/microbiologia , Redes e Vias Metabólicas/genética , Fotossíntese , Proteobactérias/metabolismo , Alga Marinha/metabolismo , Alga Marinha/microbiologia , Análise de Sequência de DNA , Simbiose , Terpenos/metabolismo
11.
PeerJ ; 7: e6469, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30972241

RESUMO

The genus Plocamium encompasses seaweeds that are widely distributed throughout the world's oceans, with Plocamium brasiliense found along the tropical and subtropical coasts of the Western Atlantic. This wide distribution can lead to structured populations due to environmental differences (e.g., light levels or temperature), restricted gene flow, and the presence of cryptic species. Abiotic variation can also affect gene expression, which consequently leads to differences in the seaweeds protein profile. This study aimed to analyze the genetic and proteomic profiles of P. brasiliense sampled in two geographically distinct sites on the coastline of Rio de Janeiro state, Brazil: Arraial do Cabo (P1) and Búzios (P2). The genetic profiles of macroalgal specimens from these two sites were indistinguishable as assessed by the markers UPA/23S, rbcL, and COI-5P; however, the protein profiles varied significantly between populations from the two sites. At both sites the ribulose-1,5-biphosphate carboxylase/oxygenase was the most abundant protein found in P. brasiliense specimens. The number of phycobiliproteins differed between both sites with the highest numbers being found at P1, possibly due to water depth. The differences in proteomic profiles of the two nearly identical populations of P. brasiliense suggest that environmental parameters such as light availability and desiccation might induce distinct protein expression, probably as a result of the phenotypic plasticity within this population of seaweed.

12.
PeerJ ; 7: e8042, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31720128

RESUMO

Mine tailing disasters have occurred worldwide and contemporary release of tailings of large proportions raise concerns of the chronic impacts that trace metals may have on the aquatic biodiversity. Environmental metabarcoding (eDNA) offers an as yet poorly explored opportunity for biological monitoring of impacted aquatic ecosystems from mine tailings and contaminated sediments. eDNA has been increasingly recognized to be an effective method to detect previously unrecognized small-sized Metazoan taxa, but their ecological responses to environmental pollution has not been assessed by metabarcoding. Here, we evaluated chronic effects of trace metal contamination from sediment eDNA of the Rio Doce estuary, 1.7 years after the Samarco mine tailing disaster, which released over 40 million m3 of iron tailings in the Rio Doce river basin. We identified 123 new sequence variants environmental taxonomic units (eOTUs) of benthic taxa and an assemblage composition dominated by Nematoda, Crustacea and Platyhelminthes; typical of other estuarine ecosystems. We detected environmental filtering on the meiofaunal assemblages and multivariate analysis revealed strong influence of Fe contamination, supporting chronic impacts from mine tailing deposition in the estuary. This was in contrast to environmental filtering of meiofaunal assemblages of non-polluted estuaries. Here, we suggest that the eDNA metabarcoding technique provides an opportunity to fill up biodiversity gaps in coastal marine ecology and may become a valid method for long term monitoring studies in mine tailing disasters and estuarine ecosystems with high trace metals content.

13.
Mar Environ Res ; 142: 59-68, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30274716

RESUMO

Changes in environmental conditions can influence sponges and their holobionts. The present study investigated the effect of upwelling and anthropogenic pollution on the bioactivity of marine sponges, microbial communities and functional genes, and composition of their chemical compounds. The species Dysidea etheria, Darwinella sp., Hymeniacidon heliophila and Tedania ignis were collected from areas with distinct influence of upwelling and low anthropogenic impact and from areas without influence of upwelling but affected by sewage and the port. In most cases, the same sponge species collected from areas with distinct environmental conditions had a different chemical composition, antifouling activity, composition and diversity of associated microorganisms. Antimicrobial, quorum sensing inhibitory and anti-larval activities of sponge extracts were more pronounced in the area without upwelling showing higher level of anthropogenic pollution. This study suggests that upwelling and anthropogenic pollution affect the chemical activity and holobiome composition of sponges.


Assuntos
Meio Ambiente , Microbiota/efeitos dos fármacos , Poríferos/microbiologia , Poluentes da Água/toxicidade , Animais , Organismos Aquáticos/química , Organismos Aquáticos/efeitos dos fármacos , Organismos Aquáticos/microbiologia , Poríferos/química , Poríferos/efeitos dos fármacos
14.
Front Microbiol ; 9: 2203, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30337906

RESUMO

Local and global stressors have affected coral reef ecosystems worldwide. Switches from coral to algal dominance states and microbialization are the major processes underlying the global decline of coral reefs. However, most of the knowledge concerning microbialization has not considered physical disturbances (e.g., typhoons, waves, and currents). Southern Japan reef systems have developed under extreme physical disturbances. Here, we present analyses of a three-year investigation on the coral reefs of Ishigaki Island that comprised benthic and fish surveys, water quality analyses, metagenomics and microbial abundance data. At the four studied sites, inorganic nutrient concentrations were high and exceeded eutrophication thresholds. The dissolved organic carbon (DOC) concentration (up to 233.3 µM) and microbial abundance (up to 2.5 × 105 cell/mL) values were relatively high. The highest vibrio counts coincided with the highest turf cover (∼55-85%) and the lowest coral cover (∼4.4-10.2%) and fish biomass (0.06 individuals/m2). Microbiome compositions were similar among all sites and were dominated by heterotrophs. Our data suggest that a synergic effect among several regional stressors are driving coral decline. In a high hydrodynamics reef environment, high algal/turf cover, stimulated by eutrophication and low fish abundance due to overfishing, promote microbialization. Together with crown-of-thorns starfish (COTS) outbreaks and possible of climate changes impacts, theses coral reefs are likely to collapse.

15.
BMC Med Genomics ; 10(1): 5, 2017 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-28077143

RESUMO

BACKGROUND: Microcephaly has become a major public health problem in Brazil. The total number of newborns with microcephaly was reported to be >4000 in June 2016. Studies suggest that Zika Virus is a major cause of new microcephaly cases in Brazil. Inside the uterus, the foetus is surrounded by the Amniotic Fluid, a proximal fluid that contains foetal and maternal cells as well as microorganisms and where Zika Virus was already found. CASE PRESENTATION: A previous study reported the presence of the Zika Virus in the amniotic fluid (collected in the 28th gestational week) of two pregnant women carrying microcephaly foetuses in Brazil. The virus was detected by means of real-time PCR and metatranscriptomic analysis. We compared the microbiome of these two cases with metatranscriptomic sequences from 16 pregnant women collected at various times in their pregnancies CONCLUSION: Several strains of bacteria (e.g., Streptococcus and Propionibacterium) found in Amniotic Fluid may be involved in neurological diseases. When the foetus is infected by the Zika Virus, due to neurological damage, they do not move inside the uterus, thus changing the Amniotic Fluid environment, potentially leading to secondary problems. Zika infection could also lead to an immunodeficient state, making bacterial colonization of the foetuses easier. An altered microbial composition during pregnancy may also result in harmful secondary metabolite production from certain microbes that further impair foetal brain development. However, these observations of potentially harmful microbial species are correlations and thus cannot be assumed to be causative agents of (microcephaly) disease. In our study, microbial and parasitic diversity of the Amniotic Fluid was lower in patients infected by ZIKV, compared to that of Prenatal and Preterm controls. The present study was a first attempt to shed light on the microbial and parasitic diversity associated with ZIKV-infected pregnant women bearing microcephaly foetuses, and the presence of diverse microbial and parasite communities in the Amniotic Fluid suggests a poor health status of both the pregnant women and the foetuses they carry.


Assuntos
Líquido Amniótico/microbiologia , Líquido Amniótico/parasitologia , Microcefalia/microbiologia , Microcefalia/parasitologia , Zika virus/fisiologia , Feminino , Humanos , Microcefalia/virologia , Gravidez
16.
mSphere ; 2(6)2017.
Artigo em Inglês | MEDLINE | ID: mdl-29242829

RESUMO

The ability to recognize and respond to the presence of microbes is an essential strategy for seaweeds to survive in the marine environment, but understanding of molecular seaweed-microbe interactions is limited. Laurencia dendroidea clones were inoculated with the marine bacterium Vibrio madracius. The seaweed RNA was sequenced, providing an unprecedentedly high coverage of the transcriptome of Laurencia, and the gene expression levels were compared between control and inoculated samples after 24, 48, and 72 h. Transcriptomic changes in L. dendroidea in the presence of V. madracius include the upregulation of genes that participate in signaling pathways described here for the first time as a response of seaweeds to microbes. Genes coding for defense-related transcription activators, reactive oxygen species metabolism, terpene biosynthesis, and energy conversion pathways were upregulated in inoculated samples of L. dendroidea, indicating an integrated defensive system in seaweeds. This report contributes significantly to the current knowledge about the molecular mechanisms involved in the highly dynamic seaweed-bacterium interactions. IMPORTANCE Marine bacteria are part of the healthy microbiota associated with seaweeds, but some species, such as Vibrio spp., are frequently associated with disease outbreaks, especially in economically valuable cultures. In this context, the ability of seaweeds to recognize microbes and, when necessary, activate defense mechanisms is essential for their survival. However, studies dedicated to understanding the molecular components of the immune response in seaweeds are rare and restricted to indirect stimulus. This work provides an unprecedentedly large-scale evaluation of the transcriptional changes involved in microbe recognition, cellular signaling, and defense in the red seaweed Laurencia dendroidea in response to the marine bacterium Vibrio madracius. By expanding knowledge about seaweed-bacterium interactions and about the integrated defensive system in seaweeds, this work offers the basis for the development of tools to increase the resistance of cultured seaweeds to bacterial infections.

17.
Front Microbiol ; 8: 1019, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28659874

RESUMO

One consequence of oil production is the possibility of unplanned accidental oil spills; therefore, it is important to evaluate the potential of indigenous microorganisms (both prokaryotes and eukaryotes) from different oceanic basins to degrade oil. The aim of this study was to characterize the microbial response during the biodegradation process of Brazilian crude oil, both with and without the addition of the dispersant Corexit 9500, using deep-sea water samples from the Amazon equatorial margin basins, Foz do Amazonas and Barreirinhas, in the dark and at low temperatures (4°C). We collected deep-sea samples in the field (about 2570 m below the sea surface), transported the samples back to the laboratory under controlled environmental conditions (5°C in the dark) and subsequently performed two laboratory biodegradation experiments that used metagenomics supported by classical microbiological methods and chemical analysis to elucidate both taxonomic and functional microbial diversity. We also analyzed several physical-chemical and biological parameters related to oil biodegradation. The concomitant depletion of dissolved oxygen levels, oil droplet density characteristic to oil biodegradation, and BTEX concentration with an increase in microbial counts revealed that oil can be degraded by the autochthonous deep-sea microbial communities. Indigenous bacteria (e.g., Alteromonadaceae, Colwelliaceae, and Alcanivoracaceae), archaea (e.g., Halobacteriaceae, Desulfurococcaceae, and Methanobacteriaceae), and eukaryotic microbes (e.g., Microsporidia, Ascomycota, and Basidiomycota) from the Amazonian margin deep-sea water were involved in biodegradation of Brazilian crude oil within less than 48-days in both treatments, with and without dispersant, possibly transforming oil into microbial biomass that may fuel the marine food web.

18.
PeerJ ; 5: e3666, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28828261

RESUMO

As coral reef habitats decline worldwide, some reefs are transitioning from coral- to algal-dominated benthos with the exact cause for this shift remaining elusive. Increases in the abundance of microbes in the water column has been correlated with an increase in coral disease and reduction in coral cover. Here we investigated how multiple reef organisms influence microbial communities in the surrounding water column. Our study consisted of a field assessment of microbial communities above replicate patches dominated by a single macro-organism. Metagenomes were constructed from 20 L of water above distinct macro-organisms, including (1) the coral Mussismilia braziliensis, (2) fleshy macroalgae (Stypopodium, Dictota and Canistrocarpus), (3) turf algae, and (4) the zoanthid Palythoa caribaeorum and were compared to the water microbes collected 3 m above the reef. Microbial genera and functional potential were annotated using MG-RAST and showed that the dominant benthic macro-organisms influence the taxa and functions of microbes in the water column surrounding them, developing a specific "aura-biome". The coral aura-biome reflected the open water column, and was associated with Synechococcus and functions suggesting oligotrophic growth, while the fleshy macroalgae aura-biome was associated with Ruegeria, Pseudomonas, and microbial functions suggesting low oxygen conditions. The turf algae aura-biome was associated with Vibrio, Flavobacterium, and functions suggesting pathogenic activity, while zoanthids were associated with Alteromonas and functions suggesting a stressful environment. Because each benthic organism has a distinct aura-biome, a change in benthic cover will change the microbial community of the water, which may lead to either the stimulation or suppression of the recruitment of benthic organisms.

19.
mSphere ; 2(5)2017.
Artigo em Inglês | MEDLINE | ID: mdl-28989970

RESUMO

The Amazon River watershed and its associated plume comprise a vast continental and oceanic area. The microbial activities along this continuum contribute substantially to global carbon and nutrient cycling, and yet there is a dearth of information on the diversity, abundance, and possible roles of viruses in this globally important river. The aim of this study was to elucidate the diversity and structure of virus assemblages of the Amazon River-ocean continuum. Environmental viral DNA sequences were obtained for 12 locations along the river's lower reach (n = 5) and plume (n = 7). Sequence assembly yielded 29,358 scaffolds, encoding 82,546 viral proteins, with 15 new complete viral genomes. Despite the spatial connectivity mediated by the river, virome analyses and physical-chemical water parameters clearly distinguished river and plume ecosystems. Bacteriophages were ubiquitous in the continuum and were more abundant in the transition region. Eukaryotic viruses occurred mostly in the river, while the plume had more viruses of autotrophic organisms (Prochlorococcus, Synechococcus) and heterotrophic bacteria (Pelagibacter). The viral families Microviridae and Myoviridae were the most abundant and occurred throughout the continuum. The major functions of the genes in the continuum involved viral structures and life cycles, and viruses from plume locations and Tapajós River showed the highest levels of functional diversity. The distribution patterns of the viral assemblages were defined not only by the occurrence of possible hosts but also by water physical and chemical parameters, especially salinity. The findings presented here help to improve understanding of the possible roles of viruses in the organic matter cycle along the river-ocean continuum. IMPORTANCE The Amazon River forms a vast plume in the Atlantic Ocean that can extend for more than 1,000 km. Microbial communities promote a globally relevant carbon sink system in the plume. Despite the importance of viruses for the global carbon cycle, the diversity and the possible roles of viruses in the Amazon are poorly understood. The present work assesses, for the first time, the abundance and diversity of viruses simultaneously in the river and ocean in order to elucidate their possible roles. DNA sequence assembly yielded 29,358 scaffolds, encoding 82,546 viral proteins, with 15 new complete viral genomes from the 12 river and ocean locations. Viral diversity was clearly distinguished by river and ocean. Bacteriophages were the most abundant and occurred throughout the continuum. Viruses that infect eukaryotes were more abundant in the river, whereas phages appeared to have strong control over the host prokaryotic populations in the plume.

20.
Front Microbiol ; 8: 784, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28588555

RESUMO

Corals display circadian physiological cycles, changing from autotrophy during the day to heterotrophy during the night. Such physiological transition offers distinct environments to the microbial community associated with corals: an oxygen-rich environment during daylight hours and an oxygen-depleted environment during the night. Most studies of coral reef microbes have been performed on samples taken during the day, representing a bias in the understanding of the composition and function of these communities. We hypothesized that coral circadian physiology alters the composition and function of microbial communities in reef boundary layers. Here, we analyzed microbial communities associated with the momentum boundary layer (MBL) of the Brazilian endemic reef coral Mussismilia braziliensis during a diurnal cycle, and compared them to the water column. We determined microbial abundance and nutrient concentration in samples taken within a few centimeters of the coral's surface every 6 h for 48 h, and sequenced microbial metagenomes from a subset of the samples. We found that dominant taxa and functions in the coral MBL community were stable over the time scale of our sampling, with no significant shifts between night and day samples. Interestingly, the two water column metagenomes sampled 1 m above the corals were also very similar to the MBL metagenomes. When all samples were analyzed together, nutrient concentration significantly explained 40% of the taxonomic dissimilarity among dominant genera in the community. Functional profiles were highly homogenous and not significantly predicted by any environmental variables measured. Our data indicated that water flow may overrule the effects of coral physiology in the MBL bacterial community, at the scale of centimeters, and suggested that sampling resolution at the scale of millimeters may be necessary to address diurnal variation in community composition.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA