Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Immunol Rev ; 301(1): 193-208, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33913182

RESUMO

Leprosy is a much-feared incapacitating infectious disease caused by Mycobacterium leprae or M lepromatosis, annually affecting roughly 200,000 people worldwide. During host-pathogen interaction, M leprae subverts the immune response, leading to development of disease. Throughout the last few decades, the impact of energy metabolism on the control of intracellular pathogens and leukocytic differentiation has become more evident. Mitochondria play a key role in regulating newly-discovered immune signaling pathways by controlling redox metabolism and the flow of energy besides activating inflammasome, xenophagy, and apoptosis. Likewise, this organelle, whose origin is probably an alphaproteobacterium, directly controls the intracellular pathogens attempting to invade its niche, a feature conquered at the expense of billions of years of coevolution. In the present review, we discuss the role of reduced host cell mitochondrial activity during M leprae infection and the consequential fates of M leprae and host innate immunity. Conceivably, inhibition of mitochondrial energy metabolism emerges as an overlooked and novel mechanism developed by M leprae to evade xenophagy and the host immune response.


Assuntos
Hanseníase , Mycobacterium leprae , Interações Hospedeiro-Patógeno , Humanos , Imunidade Inata , Mitocôndrias
2.
J Biol Chem ; 291(41): 21375-21387, 2016 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-27555322

RESUMO

Mycobacterium leprae, the intracellular etiological agent of leprosy, infects Schwann promoting irreversible physical disabilities and deformities. These cells are responsible for myelination and maintenance of axonal energy metabolism through export of metabolites, such as lactate and pyruvate. In the present work, we observed that infected Schwann cells increase glucose uptake with a concomitant increase in glucose-6-phosphate dehydrogenase (G6PDH) activity, the key enzyme of the oxidative pentose pathway. We also observed a mitochondria shutdown in infected cells and mitochondrial swelling in pure neural leprosy nerves. The classic Warburg effect described in macrophages infected by Mycobacterium avium was not observed in our model, which presented a drastic reduction in lactate generation and release by infected Schwann cells. This effect was followed by a decrease in lactate dehydrogenase isoform M (LDH-M) activity and an increase in cellular protection against hydrogen peroxide insult in a pentose phosphate pathway and GSH-dependent manner. M. leprae infection success was also dependent of the glutathione antioxidant system and its main reducing power source, the pentose pathway, as demonstrated by a 50 and 70% drop in intracellular viability after treatment with the GSH synthesis inhibitor buthionine sulfoximine, and aminonicotinamide (6-ANAM), an inhibitor of G6PDH 6-ANAM, respectively. We concluded that M. leprae could modulate host cell glucose metabolism to increase the cellular reducing power generation, facilitating glutathione regeneration and consequently free-radical control. The impact of this regulation in leprosy neuropathy is discussed.


Assuntos
Metabolismo Energético , Glucose/metabolismo , Glucosefosfato Desidrogenase/metabolismo , Ácido Láctico/metabolismo , Hanseníase Tuberculoide/metabolismo , Mycobacterium leprae/metabolismo , Células de Schwann/metabolismo , Linhagem Celular , Humanos , Metionina/análogos & derivados , Metionina/farmacologia , Mitocôndrias/metabolismo , Células de Schwann/microbiologia
4.
Int J Cell Biol ; 2012: 593838, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22693511

RESUMO

Cancer cells display abnormal morphology, chromosomes, and metabolism. This review will focus on the metabolism of tumor cells integrating the available data by way of a functional approach. The first part contains a comprehensive introduction to bioenergetics, mitochondria, and the mechanisms of production and degradation of reactive oxygen species. This will be followed by a discussion on the oxidative metabolism of tumor cells including the morphology, biogenesis, and networking of mitochondria. Tumor cells overexpress proteins that favor fission, such as GTPase dynamin-related protein 1 (Drp1). The interplay between proapoptotic members of the Bcl-2 family that promotes Drp 1-dependent mitochondrial fragmentation and fusogenic antiapoptotic proteins such as Opa-1 will be presented. It will be argued that contrary to the widespread belief that in cancer cells, aerobic glycolysis completely replaces oxidative metabolism, a misrepresentation of Warburg's original results, mitochondria of tumor cells are fully viable and functional. Cancer cells also carry out oxidative metabolism and generally conform to the orthodox model of ATP production maintaining as well an intact electron transport system. Finally, data will be presented indicating that the key to tumor cell survival in an ROS rich environment depends on the overexpression of antioxidant enzymes and high levels of the nonenzymatic antioxidant scavengers.

6.
Rev Col Bras Cir ; 37(1): 31-8, 2010 Feb.
Artigo em Português | MEDLINE | ID: mdl-20414575

RESUMO

OBJECTIVE: This study aimed to assess the catalase activity after ischemia and reperfusion and to study the changes of this antioxidant in organs located far from the initial insult. METHODS: Eighteen Wistar rats were randomly divided into three groups. 1-Control, 2-Simulation and 3-Ischemia and Reperfusion. In the latter it was done an ischemia of the ileum for 60 minutes followed by reperfusion for 30 minutes. In group 2 only laparotomy was performed. From all animals it was taken segments of the reperfused and non reperfused intestine, as well of the right kidney and lung to be evaluated under light microscopy. Catalase activity was measured in spectrophotometer with a wavelength set to 240 nm. It was used Mann Whitney and Kruskal Wallis statistical tests. RESULTS: There was a significant increase (p <0.05) in the catalase activity not only at small bowel ischemic and non-ischemic segments but also at lungs. However the enzymatic activity decreases in the kidney. In all organs studied at reperfusion group it was found a slight villi derangement, mild congestion and infiltration with inflammatory cells, and areas of pulmonary atelectasis. CONCLUSION: The intestinal oxidative stress in rats causes biochemical changes at distance, with mobilization of antioxidant defense mechanisms in lung, non-ischemic intestinal segment and kidney, with early decrease in this last organ, however, with no relevant cellular damage.


Assuntos
Catalase/metabolismo , Intestino Delgado/enzimologia , Rim/enzimologia , Pulmão/enzimologia , Traumatismo por Reperfusão/enzimologia , Animais , Intestino Delgado/patologia , Rim/patologia , Pulmão/patologia , Ratos , Ratos Wistar , Traumatismo por Reperfusão/patologia
7.
Plant Physiol ; 149(2): 1099-110, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19109413

RESUMO

Potato tuber (Solanum tuberosum) mitochondria (PTM) have a mitochondrially bound hexokinase (HK) activity that exhibits a pronounced sensitivity to ADP inhibition. Here we investigated the role of mitochondrial HK activity in PTM reactive oxygen species generation. Mitochondrial HK has a 10-fold higher affinity for glucose (Glc) than for fructose (KMGlc=140 microM versus KMFrc=1,375 microM). Activation of PTM respiration by succinate led to an increase in hydrogen peroxide (H2O2) release that was abrogated by mitochondrial HK activation. Mitochondrial HK activity caused a decrease in the mitochondrial membrane potential and an increase in oxygen consumption by PTM. Inhibition of Glc phosphorylation by mannoheptulose or GlcNAc induced a rapid increase in H2O2 release. The blockage of H2O2 release sustained by Glc was reverted by oligomycin and atractyloside, indicating that ADP recycles through the adenine nucleotide translocator and F0F1ATP synthase is operative during the mitochondrial HK reaction. Inhibition of mitochondrial HK activity by 60% to 70% caused an increase of 50% in the maximal rate of H2O2 release. Inhibition in H2O2 release by mitochondrial HK activity was comparable to, or even more potent, than that observed for StUCP (S. tuberosum uncoupling protein) activity. The inhibition of H2O2 release in PTM was two orders of magnitude more selective for the ADP produced from the mitochondrial HK reaction than for that derived from soluble yeast (Saccharomyces cerevisiae) HK. Modulation of H2O2 release and oxygen consumption by Glc and mitochondrial HK inhibitors in potato tuber slices shows that hexoses and mitochondrial HK may act as a potent preventive antioxidant mechanism in potato tubers.


Assuntos
Hexoquinase/metabolismo , Mitocôndrias/metabolismo , Raízes de Plantas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Solanum tuberosum/metabolismo , Difosfato de Adenosina/farmacologia , Hexoquinase/antagonistas & inibidores , Cinética , Potenciais da Membrana/fisiologia , Mitocôndrias/enzimologia , Membranas Mitocondriais/fisiologia , Consumo de Oxigênio
9.
Rev. Col. Bras. Cir ; 37(1): 031-038, ene.-feb. 2010. graf, ilus
Artigo em Português | LILACS | ID: lil-554489

RESUMO

OBJETIVO: Avaliar a atividade catalase, após lesão por isquemia e reperfusão intestinal e estudar as alterações deste antioxidante em órgãos situados à distância do insulto inicial. MÉTODOS: Utilizaram-se 18 ratos do tipo Wistar, aleatoriamente distribuídos em três grupos. 1-Controle, 2-Simulação e 3-Isquemia/Reperfusão. Neste último, realizou-se isquemia no íleo, por 60 minutos, seguida de reperfusão por 30 minutos. No grupo 2 efetuou-se apenas uma laparotomia. Foram retirados, de todos os animais, segmentos do intestino com e sem reperfusão, além do pulmão e rim direitos para exame com microscopia óptica. A atividade da catalase foi aferida em espectrofotômetro ajustado para 240 nm. Utilizaram-se os testes estatísticos Mann e Whitney e Kruskal Wallis. RESULTADOS: Observou-se aumento significante (p < 0.05), da atividade da catalase nas porções do intestino isquemiado e não isquemiado, além do pulmão. Houve redução da atividade enzimática no rim. No grupo com reperfusão observaram-se alteração nas vilosidades, infiltrado inflamatório em todas as vísceras, além de áreas de atelectasia pulmonar. CONCLUSÃO: O estresse oxidativo intestinal, em ratos, causa alterações bioquímicas à distância com mobilização dos mecanismos de defesa antioxidante pulmonar, em segmento intestinal não isquemiado e no rim, com esgotamento precoce das reservas deste último, no entanto, sem lesão celular relevante, destas vísceras.


OBJECTIVE: This study aimed to assess the catalase activity after ischemia and reperfusion and to study the changes of this antioxidant in organs located far from the initial insult. METHODS: Eighteen Wistar rats were randomly divided into three groups. 1-Control, 2-Simulation and 3-Ischemia and Reperrfusion. In the latter it was done an ischemia of the ileum for 60 minutes followed by reperfusion for 30 minutes. In group 2 only laparotomy was performed. From all animals it was taken segments of the reperfused and non reperfused intestine, as well of the right kidney and lung to be evaluated under light microscopy. Catalase activity was measured in spectrophotometer with a wavelength set to 240 nm. It was used Mann Whitney and Kruskal Wallis statistical tests. RESULTS: There was a significant increase (p <0.05) in the catalase activity not only at small bowel ischemic and non-ischemic segments but also at lungs. However the enzymatic activity decreases in the kidney. In all organs studied at reperfusion group it was found a slight villi derangement, mild congestion and infiltration with inflammatory cells, and areas of pulmonary atelectasis. CONCLUSION: The intestinal oxidative stress in rats causes biochemical changes at distance, with mobilization of antioxidant defense mechanisms in lung, non-ischemic intestinal segment and kidney, with early decrease in this last organ, however, with no relevant cellular damage.


Assuntos
Animais , Ratos , Catalase/metabolismo , Intestino Delgado/enzimologia , Rim/enzimologia , Pulmão/enzimologia , Traumatismo por Reperfusão/enzimologia , Intestino Delgado/patologia , Rim/patologia , Pulmão/patologia , Ratos Wistar , Traumatismo por Reperfusão/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA