Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros

País/Região como assunto
Intervalo de ano de publicação
1.
J Biol Chem ; 292(17): 7023-7039, 2017 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-28292930

RESUMO

Leishmania parasites have evolved a number of strategies to cope with the harsh environmental changes during mammalian infection. One of these mechanisms involves the functional gain that allows mitochondrial 2-Cys peroxiredoxins to act as molecular chaperones when forming decamers. This function is critical for parasite infectivity in mammals, and its activation has been considered to be controlled exclusively by the enzyme redox state under physiological conditions. Herein, we have revealed that magnesium and calcium ions play a major role in modulating the ability of these enzymes to act as molecular chaperones, surpassing the redox effect. These ions are directly involved in mitochondrial metabolism and participate in a novel mechanism to stabilize the decameric form of 2-Cys peroxiredoxins in Leishmania mitochondria. Moreover, we have demonstrated that a constitutively dimeric Prx1m mutant impairs the survival of Leishmania under heat stress, supporting the central role of the chaperone function of Prx1m for Leishmania parasites during the transition from insect to mammalian hosts.


Assuntos
Cálcio/metabolismo , Leishmania/metabolismo , Magnésio/metabolismo , Proteínas Mitocondriais/metabolismo , Peroxirredoxinas/metabolismo , Proteínas de Protozoários/metabolismo , Anisotropia , Cromatografia , Dissulfetos/química , Fluorometria , Regulação da Expressão Gênica , Proteínas de Homeodomínio/metabolismo , Humanos , Concentração de Íons de Hidrogênio , Luz , Mitocôndrias/metabolismo , Chaperonas Moleculares/metabolismo , Mutagênese Sítio-Dirigida , Oxirredução , Oxigênio/química , Multimerização Proteica , Espalhamento de Radiação , Temperatura
2.
BMC Bioinformatics ; 16: 52, 2015 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-25879480

RESUMO

BACKGROUND: The organization of the canonical code has intrigued researches since it was first described. If we consider all codes mapping the 64 codes into 20 amino acids and one stop codon, there are more than 1.51×10(84) possible genetic codes. The main question related to the organization of the genetic code is why exactly the canonical code was selected among this huge number of possible genetic codes. Many researchers argue that the organization of the canonical code is a product of natural selection and that the code's robustness against mutations would support this hypothesis. In order to investigate the natural selection hypothesis, some researches employ optimization algorithms to identify regions of the genetic code space where best codes, according to a given evaluation function, can be found (engineering approach). The optimization process uses only one objective to evaluate the codes, generally based on the robustness for an amino acid property. Only one objective is also employed in the statistical approach for the comparison of the canonical code with random codes. We propose a multiobjective approach where two or more objectives are considered simultaneously to evaluate the genetic codes. RESULTS: In order to test our hypothesis that the multiobjective approach is useful for the analysis of the genetic code adaptability, we implemented a multiobjective optimization algorithm where two objectives are simultaneously optimized. Using as objectives the robustness against mutation with the amino acids properties polar requirement (objective 1) and robustness with respect to hydropathy index or molecular volume (objective 2), we found solutions closer to the canonical genetic code in terms of robustness, when compared with the results using only one objective reported by other authors. CONCLUSIONS: Using more objectives, more optimal solutions are obtained and, as a consequence, more information can be used to investigate the adaptability of the genetic code. The multiobjective approach is also more natural, because more than one objective was adapted during the evolutionary process of the canonical genetic code. Our results suggest that the evaluation function employed to compare genetic codes should consider simultaneously more than one objective, in contrast to what has been done in the literature.


Assuntos
Algoritmos , Aminoácidos/genética , Evolução Molecular , Código Genético , Modelos Genéticos , Biossíntese de Proteínas , Seleção Genética/genética , Humanos , Mutação/genética
3.
J Biol Chem ; 289(11): 7362-73, 2014 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-24469445

RESUMO

Arabinanases (ABNs, EC 3.2.1.99) are promising catalysts for environmentally friendly biomass conversion into energy and chemicals. These enzymes catalyze the hydrolysis of the α-1,5-linked L-arabinofuranoside backbone of plant cell wall arabinans releasing arabino-oligosaccharides and arabinose, the second most abundant pentose in nature. In this work, new findings about the molecular mechanisms governing activation, functional differentiation, and catalysis of GH43 ABNs are presented. Biophysical, mutational, and biochemical studies with the hyperthermostable two-domain endo-acting ABN from Thermotoga petrophila (TpABN) revealed how some GH43 ABNs are activated by calcium ions via hyperpolarization of the catalytically relevant histidine and the importance of the ancillary domain for catalysis and conformational stability. On the other hand, the two GH43 ABNs from rumen metagenome, ARN2 and ARN3, presented a calcium-independent mechanism in which sodium is the most likely substituent for calcium ions. The crystal structure of the two-domain endo-acting ARN2 showed that its ability to efficiently degrade branched substrates is due to a larger catalytic interface with higher accessibility than that observed in other ABNs with preference for linear arabinan. Moreover, crystallographic characterization of the single-domain exo-acting ARN3 indicated that its cleavage pattern producing arabinose is associated with the chemical recognition of the reducing end of the substrate imposed by steric impediments at the aglycone-binding site. By structure-guided rational design, ARN3 was converted into a classical endo enzyme, confirming the role of the extended Arg(203)-Ala(230) loop in determining its action mode. These results reveal novel molecular aspects concerning the functioning of GH43 ABNs and provide new strategies for arabinan degradation.


Assuntos
Arabinose/química , Proteínas de Bactérias/metabolismo , Catálise , Glicosídeo Hidrolases/metabolismo , Bacilos Gram-Negativos Anaeróbios Retos, Helicoidais e Curvos/enzimologia , Sequência de Aminoácidos , Animais , Sítios de Ligação , Biotecnologia , Cálcio/química , Bovinos , Clonagem Molecular , Cristalografia por Raios X , Análise Mutacional de DNA , Hidrólise , Íons/química , Cinética , Ligantes , Metagenoma , Metais/química , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese , Engenharia de Proteínas , Estrutura Terciária de Proteína , Rúmen/microbiologia , Homologia de Sequência de Aminoácidos , Solventes/química
4.
Biochim Biophys Acta ; 1844(3): 545-52, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24373874

RESUMO

Snake venom metalloproteinases (SVMPs) belonging to P-I class are able to hydrolyze extracellular matrix proteins and coagulation factors triggering local and systemic reactions by multiple molecular mechanisms that are not fully understood. BmooMPα-I, a P-I class SMVP from Bothrops moojeni venom, was active upon neuro- and vaso-active peptides including angiotensin I, bradykinin, neurotensin, oxytocin and substance P. Interestingly, BmooMPα-I showed a strong bias towards hydrolysis after proline residues, which is unusual for most of characterized peptidases. Moreover, the enzyme showed kininogenase activity similar to that observed in plasma and cells by kallikrein. FRET peptide assays indicated a relative promiscuity at its S2-S'2 subsites, with proline determining the scissile bond. This unusual post-proline cleaving activity was confirmed by the efficient hydrolysis of the synthetic combinatorial library MCA-GXXPXXQ-EDDnp, described as resistant for canonical peptidases, only after Pro residues. Structural analysis of the tripeptide LPL complexed with BmooMPα-I, generated by molecular dynamics simulations, assisted in defining the subsites and provided the structural basis for subsite preferences such as the restriction of basic residues at the S2 subsite due to repulsive electrostatic effects and the steric impediment for large aliphatic or aromatic side chains at the S1 subsite. These new functional and structural findings provided a further understanding of the molecular mechanisms governing the physiological effects of this important class of enzymes in envenomation process.


Assuntos
Venenos de Crotalídeos/enzimologia , Calicreínas/metabolismo , Metaloproteases/metabolismo , Serina Endopeptidases/metabolismo , Sequência de Aminoácidos , Animais , Bothrops , Hidrólise , Cinética , Simulação de Dinâmica Molecular , Peptídeos/química , Peptídeos/metabolismo , Prolil Oligopeptidases , Radioimunoensaio , Especificidade por Substrato
5.
BMC Bioinformatics ; 15: 197, 2014 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-24938294

RESUMO

BACKGROUND: The characterization of protein binding sites is a major challenge in computational biology. Proteins interact with a wide variety of molecules and understanding of such complex interactions is essential to gain deeper knowledge of protein function. Shape complementarity is known to be important in determining protein-ligand interactions. Furthermore, these protein structural features have been shown to be useful in assisting medicinal chemists during lead discovery and optimization. RESULTS: We developed KVFinder, a highly versatile and easy-to-use tool for cavity prospection and spatial characterization. KVFinder is a geometry-based method that has an innovative customization of the search space. This feature provides the possibility of cavity segmentation, which alongside with the large set of customizable parameters, allows detailed cavity analyses. Although the main focus of KVFinder is the steered prospection of cavities, we tested it against a benchmark dataset of 198 known drug targets in order to validate our software and compare it with some of the largely accepted methods. Using the one click mode, we performed better than most of the other methods, staying behind only of hybrid prospection methods. When using just one of KVFinder's customizable features, we were able to outperform all other compared methods. KVFinder is also user friendly, as it is available as a PyMOL plugin, or command-line version. CONCLUSION: KVFinder presents novel usability features, granting full customizable and highly detailed cavity prospection on proteins, alongside with a friendly graphical interface. KVFinder is freely available on http://lnbio.cnpem.br/bioinformatics/main/software/.


Assuntos
Biologia Computacional/métodos , Proteínas/química , Software , Algoritmos , Sítios de Ligação , Ligantes , Modelos Moleculares , Ligação Proteica , Estrutura Terciária de Proteína
6.
J Biol Chem ; 288(47): 34131-34145, 2013 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-24097982

RESUMO

Myosin V (MyoV) motors have been implicated in the intracellular transport of diverse cargoes including vesicles, organelles, RNA-protein complexes, and regulatory proteins. Here, we have solved the cargo-binding domain (CBD) structures of the three human MyoV paralogs (Va, Vb, and Vc), revealing subtle structural changes that drive functional differentiation and a novel redox mechanism controlling the CBD dimerization process, which is unique for the MyoVc subclass. Moreover, the cargo- and motor-binding sites were structurally assigned, indicating the conservation of residues involved in the recognition of adaptors for peroxisome transport and providing high resolution insights into motor domain inhibition by CBD. These results contribute to understanding the structural requirements for cargo transport, autoinhibition, and regulatory mechanisms in myosin V motors.


Assuntos
Miosina Tipo V/química , Sítios de Ligação , Transporte Biológico Ativo/fisiologia , Humanos , Miosina Tipo V/genética , Miosina Tipo V/metabolismo , Peroxissomos/química , Peroxissomos/genética , Peroxissomos/metabolismo , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , Homologia Estrutural de Proteína
7.
Proc Natl Acad Sci U S A ; 108(1): 226-31, 2011 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-21169504

RESUMO

Aldehyde dehydrogenases (ALDHs) catabolize toxic aldehydes and process the vitamin A-derived retinaldehyde into retinoic acid (RA), a small diffusible molecule and a pivotal chordate morphogen. In this study, we combine phylogenetic, structural, genomic, and developmental gene expression analyses to examine the evolutionary origins of ALDH substrate preference. Structural modeling reveals that processing of small aldehydes, such as acetaldehyde, by ALDH2, versus large aldehydes, including retinaldehyde, by ALDH1A is associated with small versus large substrate entry channels (SECs), respectively. Moreover, we show that metazoan ALDH1s and ALDH2s are members of a single ALDH1/2 clade and that during evolution, eukaryote ALDH1/2s often switched between large and small SECs after gene duplication, transforming constricted channels into wide opened ones and vice versa. Ancestral sequence reconstructions suggest that during the evolutionary emergence of RA signaling, the ancestral, narrow-channeled metazoan ALDH1/2 gave rise to large ALDH1 channels capable of accommodating bulky aldehydes, such as retinaldehyde, supporting the view that retinoid-dependent signaling arose from ancestral cellular detoxification mechanisms. Our analyses also indicate that, on a more restricted evolutionary scale, ALDH1 duplicates from invertebrate chordates (amphioxus and ascidian tunicates) underwent switches to smaller and narrower SECs. When combined with alterations in gene expression, these switches led to neofunctionalization from ALDH1-like roles in embryonic patterning to systemic, ALDH2-like roles, suggesting functional shifts from signaling to detoxification.


Assuntos
Aldeído Desidrogenase/genética , Padronização Corporal/fisiologia , Evolução Molecular , Modelos Moleculares , Filogenia , Conformação Proteica , Transdução de Sinais/genética , Tretinoína/metabolismo , Animais , Sequência de Bases , Teorema de Bayes , Análise por Conglomerados , Biologia Computacional , Perfilação da Expressão Gênica , Genes Duplicados/genética , Hibridização In Situ , Funções Verossimilhança , Modelos Genéticos , Alinhamento de Sequência , Especificidade da Espécie
8.
J Biol Chem ; 287(51): 43071-82, 2012 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-23105116

RESUMO

ADAM17, which is also known as TNFα-converting enzyme, is the major sheddase for the EGF receptor ligands and is considered to be one of the main proteases responsible for the ectodomain shedding of surface proteins. How a membrane-anchored proteinase with an extracellular catalytic domain can be activated by inside-out regulation is not completely understood. We characterized thioredoxin-1 (Trx-1) as a partner of the ADAM17 cytoplasmic domain that could be involved in the regulation of ADAM17 activity. We induced the overexpression of the ADAM17 cytoplasmic domain in HEK293 cells, and ligands able to bind this domain were identified by MS after protein immunoprecipitation. Trx-1 was also validated as a ligand of the ADAM17 cytoplasmic domain and full-length ADAM17 recombinant proteins by immunoblotting, immunolocalization, and solid phase binding assay. In addition, using nuclear magnetic resonance, it was shown in vitro that the titration of the ADAM17 cytoplasmic domain promotes changes in the conformation of Trx-1. The MS analysis of the cross-linked complexes showed cross-linking between the two proteins by lysine residues. To further evaluate the functional role of Trx-1, we used a heparin-binding EGF shedding cell model and observed that the overexpression of Trx-1 in HEK293 cells could decrease the activity of ADAM17, activated by either phorbol 12-myristate 13-acetate or EGF. This study identifies Trx-1 as a novel interaction partner of the ADAM17 cytoplasmic domain and suggests that Trx-1 is a potential candidate that could be involved in ADAM17 activity regulation.


Assuntos
Proteínas ADAM/metabolismo , Tiorredoxinas/metabolismo , Proteínas ADAM/química , Proteína ADAM17 , Sequência de Aminoácidos , Animais , Cromatografia Líquida , Reagentes de Ligações Cruzadas/farmacologia , Ativação Enzimática/efeitos dos fármacos , Células HEK293 , Células HeLa , Fator de Crescimento Semelhante a EGF de Ligação à Heparina , Humanos , Immunoblotting , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Ligantes , Espectroscopia de Ressonância Magnética , Espectrometria de Massas , Camundongos , Modelos Moleculares , Dados de Sequência Molecular , Fosforilação/efeitos dos fármacos , Fosfosserina/metabolismo , Ligação Proteica/efeitos dos fármacos , Estrutura Terciária de Proteína , Transporte Proteico/efeitos dos fármacos , Proteínas Recombinantes/metabolismo , Reprodutibilidade dos Testes , Acetato de Tetradecanoilforbol/farmacologia , Tiorredoxinas/química
9.
Mol Plant Microbe Interact ; 26(11): 1281-93, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23902259

RESUMO

Cerato-platanins (CP) are small, cysteine-rich fungal-secreted proteins involved in the various stages of the host-fungus interaction process, acting as phytotoxins, elicitors, and allergens. We identified 12 CP genes (MpCP1 to MpCP12) in the genome of Moniliophthora perniciosa, the causal agent of witches' broom disease in cacao, and showed that they present distinct expression profiles throughout fungal development and infection. We determined the X-ray crystal structures of MpCP1, MpCP2, MpCP3, and MpCP5, representative of different branches of a phylogenetic tree and expressed at different stages of the disease. Structure-based biochemistry, in combination with nuclear magnetic resonance and mass spectrometry, allowed us to define specialized capabilities regarding self-assembling and the direct binding to chitin and N-acetylglucosamine (NAG) tetramers, a fungal cell wall building block, and to map a previously unknown binding region in MpCP5. Moreover, fibers of MpCP2 were shown to act as expansin and facilitate basidiospore germination whereas soluble MpCP5 blocked NAG6-induced defense response. The correlation between these roles, the fungus life cycle, and its tug-of-war interaction with cacao plants is discussed.


Assuntos
Agaricales/genética , Cacau/microbiologia , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , Genoma Fúngico/genética , Doenças das Plantas/microbiologia , Acetilglucosamina/metabolismo , Agaricales/efeitos dos fármacos , Agaricales/crescimento & desenvolvimento , Agaricales/metabolismo , Sequência de Bases , Parede Celular/metabolismo , Quitina/metabolismo , Cristalografia por Raios X , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/isolamento & purificação , Expressão Gênica , Interações Hospedeiro-Patógeno , Modelos Moleculares , Dados de Sequência Molecular , Ressonância Magnética Nuclear Biomolecular , Filogenia , Ligação Proteica , Análise de Sequência de DNA , Análise de Sequência de RNA , Esporos Fúngicos
10.
Nat Chem Biol ; 8(1): 102-10, 2011 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-22101605

RESUMO

Focal adhesion kinase (FAK) regulates cellular processes that affect several aspects of development and disease. The FAK N-terminal FERM (4.1 protein-ezrin-radixin-moesin homology) domain, a compact clover-leaf structure, binds partner proteins and mediates intramolecular regulatory interactions. Combined chemical cross-linking coupled to MS, small-angle X-ray scattering, computational docking and mutational analyses showed that the FAK FERM domain has a molecular cleft (~998 Å(2)) that interacts with sarcomeric myosin, resulting in FAK inhibition. Accordingly, mutations in a unique short amino acid sequence of the FERM myosin cleft, FP-1, impaired the interaction with myosin and enhanced FAK activity in cardiomyocytes. An FP-1 decoy peptide selectively inhibited myosin interaction and increased FAK activity, promoting cardiomyocyte hypertrophy through activation of the AKT-mammalian target of rapamycin pathway. Our findings uncover an inhibitory interaction between the FAK FERM domain and sarcomeric myosin that presents potential opportunities to modulate the cardiac hypertrophic response through changes in FAK activity.


Assuntos
Proteína-Tirosina Quinases de Adesão Focal/química , Miócitos Cardíacos/química , Miosinas/química , Domínios e Motivos de Interação entre Proteínas , Sequência de Aminoácidos , Animais , Galinhas , Ativação Enzimática , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Hipertrofia/metabolismo , Camundongos , Modelos Moleculares , Miócitos Cardíacos/metabolismo , Miosinas/metabolismo , Estrutura Quaternária de Proteína , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo
11.
J Proteome Res ; 11(1): 237-46, 2012 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-22115061

RESUMO

Chagas disease, caused by Trypanosoma cruzi, is a devastating parasitic infection affecting millions of people. Although many efforts have been made for the development of immunotherapies, there is no available vaccine against this deadly infection. One major hurdle for the rational approach to develop a T. cruzi vaccine is the limited information about the proteins produced by different phylogenetic lineages, strains, and stages of the parasite. Here, we have adapted a 1D nanoHPLC system to perform online 2D LC-MS/MS, using the autosampler to inject the eluting salt solutions in the first dimension separation. The application of this methodology for the proteomic analysis of the infective trypomastigote stage of T. cruzi led to the identification of 1448 nonredundant proteins. Furthermore, about 14% of the identified sequences comprise surface proteins, most of them glycosylphosphatidylinositol (GPI)-anchored and related to parasite pathogenesis. Immunoinformatic analysis revealed thousands of potential peptides with predicted high-binding affinity for major histocompatibility complex (MHC) class I and II molecules. The high diversity of proteins expressed on the trypomastigote surface may have many implications for host-cell invasion and immunoevasion mechanisms triggered by the parasite. Finally, we performed a rational approach to filter potential T-cell epitopes that could be further tested and validated for development of a Chagas disease vaccine.


Assuntos
Antígenos de Protozoários/metabolismo , Cromatografia de Fase Reversa/métodos , Proteoma/metabolismo , Proteínas de Protozoários/metabolismo , Vacinas Protozoárias , Trypanosoma cruzi/imunologia , Animais , Antígenos de Protozoários/química , Antígenos de Protozoários/imunologia , Linhagem Celular , Doença de Chagas/tratamento farmacológico , Doença de Chagas/prevenção & controle , Chlorocebus aethiops , Simulação por Computador , Mapeamento de Epitopos , Epitopos de Linfócito B/imunologia , Proteínas Ligadas por GPI/química , Proteínas Ligadas por GPI/imunologia , Proteínas Ligadas por GPI/metabolismo , Antígenos de Histocompatibilidade Classe II/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Modelos Imunológicos , Fragmentos de Peptídeos/química , Proteoma/química , Proteoma/imunologia , Proteômica , Proteínas de Protozoários/química , Proteínas de Protozoários/imunologia , Espectrometria de Massas em Tandem , Trypanosoma cruzi/metabolismo
12.
Mol Ther Oncolytics ; 24: 650-662, 2022 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-35284623

RESUMO

Therapeutic strategies based on immunomodulation have improved cancer therapy. Most approaches target co-stimulatory pathways or the inhibition of immunosuppressive mechanisms, to enhance immune response and overcome the immune tolerance of tumors. Here, we propose a novel platform to deliver targeted immunomodulatory signaling, enhancing antitumor response. The platform is based on virus-like particles derived from lentiviral capsids. These particles may be engineered to harbor multifunctional ligands on the surface that drive tropism to the tumor site and deliver immunomodulatory signaling, boosting the antitumor response. We generated virus-like particles harboring a PSMA-ligand, TNFSF co-stimulatory ligands 4-1BBL or OX40L, and a membrane-anchored GM-CSF cytokine. The virus-like particles are driven to PSMA-expressing tumors and deliver immunomodulatory signaling from the TNFSF surface ligands and the anchored GM-CSF, inducing T cell proliferation, inhibition of regulatory T cells, and potentiating elimination of tumor cells. The PSMA-targeted particles harboring immunomodulators enhanced antitumor activity in immunocompetent challenged mice and may be explored as a potential tool for cancer immunotherapy.

13.
Sci Signal ; 15(731): eabm6046, 2022 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-35471943

RESUMO

Chronic pain is a major health issue, and the search for new analgesics has become increasingly important because of the addictive properties and unwanted side effects of opioids. To explore potentially new drug targets, we investigated mutations in the NTRK1 gene found in individuals with congenital insensitivity to pain with anhidrosis (CIPA). NTRK1 encodes tropomyosin receptor kinase A (TrkA), the receptor for nerve growth factor (NGF) and that contributes to nociception. Molecular modeling and biochemical analysis identified mutations that decreased the interaction between TrkA and one of its substrates and signaling effectors, phospholipase Cγ (PLCγ). We developed a cell-permeable phosphopeptide derived from TrkA (TAT-pQYP) that bound the Src homology domain 2 (SH2) of PLCγ. In HEK-293T cells, TAT-pQYP inhibited the binding of heterologously expressed TrkA to PLCγ and decreased NGF-induced, TrkA-mediated PLCγ activation and signaling. In mice, intraplantar administration of TAT-pQYP decreased mechanical sensitivity in an inflammatory pain model, suggesting that targeting this interaction may be analgesic. The findings demonstrate a strategy to identify new targets for pain relief by analyzing the signaling pathways that are perturbed in CIPA.


Assuntos
Hipo-Hidrose , Mutação , Insensibilidade Congênita à Dor , Fosfolipase C gama , Receptor trkA , Analgésicos/farmacologia , Animais , Canalopatias/genética , Canalopatias/metabolismo , Células HEK293 , Humanos , Hipo-Hidrose/genética , Hipo-Hidrose/metabolismo , Camundongos , Fator de Crescimento Neural/genética , Fator de Crescimento Neural/farmacologia , Dor/genética , Dor/metabolismo , Insensibilidade Congênita à Dor/genética , Insensibilidade Congênita à Dor/metabolismo , Fosfolipase C gama/genética , Fosfolipase C gama/metabolismo , Receptor trkA/genética , Receptor trkA/metabolismo
14.
Virulence ; 13(1): 1031-1048, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35734825

RESUMO

The ongoing COVID-19 pandemic caused a significant loss of human lives and a worldwide decline in quality of life. Treatment of COVID-19 patients is challenging, and specific treatments to reduce COVID-19 aggravation and mortality are still necessary. Here, we describe the discovery of a novel class of epiandrosterone steroidal compounds with cationic amphiphilic properties that present antiviral activity against SARS-CoV-2 in the low micromolar range. Compounds were identified in screening campaigns using a cytopathic effect-based assay in Vero CCL81 cells, followed by hit compound validation and characterization. Compounds LNB167 and LNB169 were selected due to their ability to reduce the levels of infectious viral progeny and viral RNA levels in Vero CCL81, HEK293, and HuH7.5 cell lines. Mechanistic studies in Vero CCL81 cells indicated that LNB167 and LNB169 inhibited the initial phase of viral replication through mechanisms involving modulation of membrane lipids and cholesterol in host cells. Selection of viral variants resistant to steroidal compound treatment revealed single mutations on transmembrane, lipid membrane-interacting Spike and Envelope proteins. Finally, in vivo testing using the hACE2 transgenic mouse model indicated that SARS-CoV-2 infection could not be ameliorated by LNB167 treatment. We conclude that anti-SARS-CoV-2 activities of steroidal compounds LNB167 and LNB169 are likely host-targeted, consistent with the properties of cationic amphiphilic compounds that modulate host cell lipid biology. Although effective in vitro, protective effects were cell-type specific and did not translate to protection in vivo, indicating that subversion of lipid membrane physiology is an important, yet complex mechanism involved in SARS-CoV-2 replication and pathogenesis.


Assuntos
Tratamento Farmacológico da COVID-19 , SARS-CoV-2 , Animais , Antivirais/farmacologia , Chlorocebus aethiops , Células HEK293 , Humanos , Lipídeos , Camundongos , Pandemias , Qualidade de Vida , Células Vero , Replicação Viral
15.
BMC Genet ; 12: 10, 2011 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-21251252

RESUMO

BACKGROUND: Genome wide association studies (GWAS) are becoming the approach of choice to identify genetic determinants of complex phenotypes and common diseases. The astonishing amount of generated data and the use of distinct genotyping platforms with variable genomic coverage are still analytical challenges. Imputation algorithms combine directly genotyped markers information with haplotypic structure for the population of interest for the inference of a badly genotyped or missing marker and are considered a near zero cost approach to allow the comparison and combination of data generated in different studies. Several reports stated that imputed markers have an overall acceptable accuracy but no published report has performed a pair wise comparison of imputed and empiric association statistics of a complete set of GWAS markers. RESULTS: In this report we identified a total of 73 imputed markers that yielded a nominally statistically significant association at P < 10 -5 for type 2 Diabetes Mellitus and compared them with results obtained based on empirical allelic frequencies. Interestingly, despite their overall high correlation, association statistics based on imputed frequencies were discordant in 35 of the 73 (47%) associated markers, considerably inflating the type I error rate of imputed markers. We comprehensively tested several quality thresholds, the haplotypic structure underlying imputed markers and the use of flanking markers as predictors of inaccurate association statistics derived from imputed markers. CONCLUSIONS: Our results suggest that association statistics from imputed markers showing specific MAF (Minor Allele Frequencies) range, located in weak linkage disequilibrium blocks or strongly deviating from local patterns of association are prone to have inflated false positive association signals. The present study highlights the potential of imputation procedures and proposes simple procedures for selecting the best imputed markers for follow-up genotyping studies.


Assuntos
Estudo de Associação Genômica Ampla/métodos , Estatística como Assunto , Algoritmos , Diabetes Mellitus Tipo 2/genética , Reações Falso-Positivas , Frequência do Gene , Marcadores Genéticos , Genótipo , Haplótipos , Humanos , Desequilíbrio de Ligação , Polimorfismo de Nucleotídeo Único
16.
Blood Cells Mol Dis ; 45(4): 302-7, 2010 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-20843714

RESUMO

Rare HFE variants have been shown to be associated with hereditary hemochromatosis (HH), an iron overload disease. The low frequency of the HFE p.C282Y mutation in HH-affected Brazilian patients may suggest that other HFE-related mutations may also be implicated in the pathogenesis of HH in this population. The main aim was to screen for new HFE mutations in Brazilian individuals with primary iron overload and to investigate their relationship with HH. Fifty Brazilian patients with primary iron overload (transferrin saturation>50% in females and 60% in males) were selected. Subsequent bidirectional sequencing for each HFE exon was performed. The effect of HFE mutations on protein structure were analyzed by molecular dynamics simulation and free binding energy calculations. p.C282Y in homozygosis or in heterozygosis with p.H63D were the most frequent genotypic combinations associated with HH in our sample population (present in 17 individuals, 34%). Thirty-six (72.0%) out of the 50 individuals presented at least one HFE mutation. The most frequent genotype associated with HH was the homozygous p.C282Y mutation (n=11, 22.0%). One novel mutation (p.V256I) was indentified in heterozygosis with the p.H63D mutation. In silico modeling analysis of protein behavior indicated that the p.V256I mutation does not reduce the binding affinity between HFE and ß2-microglobulin (ß2M) in the same way the p.C282Y mutation does compared with the native HFE protein. In conclusion, screening of HFE through direct sequencing, as compared to p.C282Y/p.H63D genotyping, was not able to increase the molecular diagnosis yield of HH. The novel p.V256I mutation could not be implicated in the molecular basis of the HH phenotype, although its role cannot be completely excluded in HH-phenotype development. Our molecular modeling analysis can help in the analysis of novel, previously undescribed, HFE mutations.


Assuntos
Antígenos de Histocompatibilidade Classe I/genética , Sobrecarga de Ferro/genética , Proteínas de Membrana/genética , Mutação , Patologia Molecular/métodos , Brasil/epidemiologia , Testes Genéticos , Proteína da Hemocromatose , Antígenos de Histocompatibilidade Classe I/química , Humanos , Proteínas de Membrana/química , Modelos Moleculares , Mutação de Sentido Incorreto , Conformação Proteica , Análise de Sequência de DNA
17.
Int Braz J Urol ; 36(4): 410-8; discussion 418-9, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20815947

RESUMO

PURPOSE: The determination of prognosis in patients with renal cell carcinoma (RCC) is based, classically, on stage and histopathological aspects. The metastatic disease develops in one third of patients after surgery, even in localized tumors. There are few options for treating those patients, and even the new target designed drugs have shown low rates of success in controlling disease progression. Few studies used high throughput genomic analysis in renal cell carcinoma for determination of prognosis. This study is focused on the identification of gene expression signatures in tissues of low-risk, high-risk and metastatic RCC clear cell type (RCC-CCT). MATERIALS AND METHODS: We analyzed the expression of approximately 55,000 distinct transcripts using the Whole Genome microarray platform hybridized with RNA extracted from 19 patients submitted to surgery to treat RCC-CCT with different clinical outcomes. They were divided into three groups (1) low risk, characterized by pT1, Fuhrman grade 1 or 2, no microvascular invasion RCC; (2) high risk, pT2-3, Fuhrman grade 3 or 4 with, necrosis and microvascular invasion present and (3) metastatic RCC-CCT. Normal renal tissue was used as control. RESULTS: After comparison of differentially expressed genes among low-risk, high-risk and metastatic groups, we identified a group of common genes characterizing metastatic disease. Among them Interleukin-8 and Heat shock protein 70 were over-expressed in metastasis and validated by real-time polymerase chain reaction. CONCLUSION: These findings can be used as a starting point to generate molecular markers of RCC-CCT as well as a target for the development of innovative therapies.


Assuntos
Carcinoma de Células Renais/genética , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica/genética , Neoplasias Renais/genética , Adulto , Idoso , Biomarcadores Tumorais/genética , Carcinoma de Células Renais/patologia , Progressão da Doença , Feminino , Proteínas de Choque Térmico , Humanos , Neoplasias Renais/patologia , Masculino , Análise em Microsséries , Pessoa de Meia-Idade , Estadiamento de Neoplasias
18.
Curr Protoc Chem Biol ; 10(2): e42, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29927112

RESUMO

The protein kinase C (PKC) family of serine/ threonine kinases has been shown to play active roles as either suppressors or promoters of carcinogenesis in different types of tumors. Using antibodies that preferentially recognize the active conformation of classical PKCs (cPKCs), we have previously shown that in breast cancer samples the expression levels of cPKCs were similar in estrogen receptor-positive (ER+ ) as compared to triple-negative tumors; however, the levels of active cPKCs were different. Determining the activation status of PKCs and other kinases in tumors may thus aid therapeutic decisions. Further, in basic science these tools may be used to understand the spatial and temporal dynamics of PKC signaling under different stimuli and for co-immunoprecipitation studies to detect binding partners and substrates of active cPKCs. In this article, we describe how monoclonal and polyclonal anti-active state PKC antibodies can be obtained using rational approaches to select bona fide epitopes through inspection of the crystal structure of classical PKCs coupled to molecular modeling studies. We believe that this methodology can be used for other kinases and multi-domain enzymes that undergo changes in their conformation upon activation. © 2018 by John Wiley & Sons, Inc.


Assuntos
Anticorpos/química , Anticorpos/imunologia , Proteína Quinase C/química , Proteína Quinase C/imunologia , Animais , Anticorpos Monoclonais/química , Anticorpos Monoclonais/imunologia , Domínio Catalítico , Humanos , Conformação Proteica , Proteína Quinase C/metabolismo
19.
SLAS Discov ; 23(10): 1051-1059, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-29995453

RESUMO

Human African trypanosomiasis, Chagas disease, and leishmaniasis are human infections caused by kinetoplastid parasites of the genera Trypanosoma and Leishmania. Besides their severity and global impact, treatments are still challenging. Currently available drugs have important limitations, highlighting the urgent need to develop new drugs. Phosphoglucose isomerase (PGI) is considered a promising target for the development of antiparasitic drugs, as it acts on two essential metabolic pathways, glycolysis and gluconeogenesis. Herein, we describe the identification of new nonphosphorylated inhibitors of Leishmania mexicana PGI ( LmPGI), with the potential for the development of antiparasitic drugs. A fluorescence-based high-throughput screening (HTS) assay was developed by coupling the activities of recombinant LmPGI with glucose-6-phosphate dehydrogenase and diaphorase. This coupled assay was used to screen 42,720 compounds from ChemBridge and TimTec commercial libraries. After confirmatory assays, selected LmPGI inhibitors were tested against homologous Trypanosoma cruzi and humans. The PGI hits are effective against trypanosomatid PGIs, with IC50 values in the micromolar range, and also against the human homologous enzyme. A computational analysis of cavities present on PGI's crystallographic structure suggests a potential binding site for the proposed mixed-type inhibition mechanism.


Assuntos
Descoberta de Drogas , Avaliação Pré-Clínica de Medicamentos , Inibidores Enzimáticos/farmacologia , Glucose-6-Fosfato Isomerase/antagonistas & inibidores , Bibliotecas de Moléculas Pequenas , Relação Dose-Resposta a Droga , Descoberta de Drogas/métodos , Avaliação Pré-Clínica de Medicamentos/métodos , Inibidores Enzimáticos/química , Glucose-6-Fosfato Isomerase/química , Glucose-6-Fosfato Isomerase/metabolismo , Ensaios de Triagem em Larga Escala , Humanos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Estrutura Molecular , Relação Quantitativa Estrutura-Atividade
20.
Antioxid Redox Signal ; 29(8): 717-734, 2018 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-29334756

RESUMO

AIMS: A disintegrin and metalloprotease 17 (ADAM17) modulates signaling events by releasing surface protein ectodomains such as TNFa and the EGFR-ligands. We have previously characterized cytoplasmic thioredoxin-1 (Trx-1) as a partner of ADAM17 cytoplasmic domain. Still, the mechanism of ADAM17 regulation by Trx-1 is unknown, and it has become of paramount importance to assess the degree of influence that Trx-1 has on metalloproteinase ADAM17. RESULTS: Combining discovery and targeted proteomic approaches, we uncovered that Trx-1 negatively regulates ADAM17 by direct and indirect effect. We performed cell-based assays with synthetic peptides and site-directed mutagenesis, and we demonstrated that the interaction interface of Trx-1 and ADAM17 is important for the negative regulation of ADAM17 activity. However, both Trx-1K72A and catalytic site mutant Trx-1C32/35S rescued ADAM17 activity, although the interaction with Trx-1C32/35S was unaffected, suggesting an indirect effect of Trx-1. We confirmed that the Trx-1C32/35S mutant showed diminished reductive capacity, explaining this indirect effect on increasing ADAM17 activity through oxidant levels. Interestingly, Trx-1K72A mutant showed similar oxidant levels to Trx-1C32/35S, even though its catalytic site was preserved. We further demonstrated that the general reactive oxygen species inhibitor, Nacetylcysteine (NAC), maintained the regulation of ADAM17 dependent of Trx-1 reductase activity levels; whereas the electron transport chain modulator, rotenone, abolished Trx-1 effect on ADAM17 activity. INNOVATION: We show for the first time that the mechanism of ADAM17 regulation, Trx-1 dependent, can be by direct interaction and indirect effect, bringing new insights into the cross-talk between isomerases and mammalian metalloproteinases. CONCLUSION: This unexpected Trx-1K72A behavior was due to more dimer formation and, consequently, the reduction of its Trx-1 reductase activity, evaluated through dimer verification, by gel filtration and mass spectrometry analysis. Antioxid. Redox Signal. 29, 717-734.


Assuntos
Proteína ADAM17/metabolismo , Tiorredoxinas/metabolismo , Sítios de Ligação , Células HEK293 , Humanos , Modelos Moleculares , Oxirredução , Tiorredoxinas/análise , Tiorredoxinas/genética , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA