Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Biochem Biophys Res Commun ; 506(4): 799-804, 2018 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-30384997

RESUMO

In this report, we investigated the effects of natural single nucleotide polymorphisms on the function of HSPA1A, the major stress-inducible Hsp70 gene in humans. We first established that all mutant proteins retain their ability to hydrolyze ATP, but three of them had a significantly lower rate of ATP hydrolysis as compared to the wild-type (WT) protein. We also used Isothermal Titration Calorimetry and found that although all mutants bind to protein substrate with dissociation constants similar to the WT protein, four of them had increased reaction entropies. We also tested whether these mutations affect the ability of HSPA1A to refold heat-denatured luciferase. These assays revealed that one mutation resulted in significantly lower levels while a second one resulted in higher levels of the refolded enzyme. We then determined whether the mutations affected the ability of HSPA1A to prevent apoptosis caused by poly-glutamine carrying huntingtin proteins. This assay determined that three of the mutations caused increased cell apoptosis as compared to the WT. Our results reveal that although none of these naturally occurring mutations exists on positions of known function, some alter the molecular chaperone activities of HSPA1A most probably by affecting the allosteric communication between its two major domains.


Assuntos
Proteínas de Choque Térmico HSP70/genética , Resposta ao Choque Térmico/genética , Mutação/genética , Trifosfato de Adenosina/metabolismo , Apoptose , Proteínas de Choque Térmico HSP70/química , Células HeLa , Humanos , Modelos Moleculares , Agregados Proteicos , Ligação Proteica , Redobramento de Proteína , Especificidade por Substrato
2.
Anim Biotechnol ; 28(2): 112-119, 2017 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-27791476

RESUMO

Toll-like receptor 2 (TLR2) plays an important role in recognition by the innate immune system of Gram-positive bacteria. As Gram-positive bacteria cause mastitis, we examined variations in the region of the TLR2 gene that codes for the extracellular domain. Samples of forty goats from a single dairy herd were collected, half with low SCC (≤200,000 cells/mL), and half with higher SCC. Two synonymous single nucleotide polymorphisms (SNPs) were identified: 840G > A and 1083A > G. One nonsynonymous SNP 739G > A was identified. This coded for valine or isoleucine, which have similar physiochemical properties, and was not in a region coding for a known functional domain. Surprisingly, the least square mean SCC of the heterozygous goats (146,220) was significantly lower than the SCC of homozygous GG goats (537,700; p = 0.004), although these two groups were similar in days in milk (p = 0.984), and there was no significant difference by breed (p = 0.941). Because factors other than mastitis can affect SCC and our sample sizes were limited, additional studies are needed to corroborate an association between TLR2 genotype and SCC or mastitis in goats.


Assuntos
Contagem de Células/veterinária , Cabras/genética , Cabras/metabolismo , Leite/citologia , Leite/fisiologia , Polimorfismo de Nucleotídeo Único/genética , Receptor 2 Toll-Like/genética , Animais , Feminino , Estudos de Associação Genética , Predisposição Genética para Doença/genética
3.
Biochem Biophys Res Commun ; 472(1): 270-5, 2016 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-26923070

RESUMO

HspA1A, a seventy-kilodalton heat shock protein, binds to specific anionic lipids and this interaction regulates important physiological phenomena like apoptosis, tumor growth, and lysosomal rescue. However, whether HspA1A binds to phosphoinositides has yet to be established and quantified. Therefore, in this study, we determined the binding affinity of HspA1A to several phosphoinositides and characterized five aspects of their molecular interaction. First, we established that HspA1A binds phosphatidylinositol monophosphates with higher affinity than di- and triphosphorylated inositides. Second, using high concentrations of potassium we found that HSPA1A embeds within the lipid bilayer of all phosphoinositides tested. However, the effects of the high salt concentrations were significantly different between the different phosphoinositides. Third, using calcium and reaction buffers equilibrated at different pH values we found that these differentially affected HspA1A-phosphoinositide binding, revealing a lipid-specific pattern of binding. Fourth, by assessing the binding properties of the two HspA1A domains, the nucleotide-binding domain and the substrate-binding domain, we determined that in most cases the full-length protein is necessary for binding to phosphoinositides. Fifth, by including in the reactions nucleotides and protein substrates we determined that they minimally and differentially affected phosphoinositide-binding. Collectively, these findings strongly suggest that the HspA1A-phosphoinositide binding is complex yet specific, is mediated by both electrostatic and hydrophobic interactions, is not related to the lipid-head charge, and depends on the physicochemical properties of the lipid.


Assuntos
Proteínas de Choque Térmico HSP70/metabolismo , Fosfatidilinositóis/metabolismo , Animais , Cálcio/metabolismo , Proteínas de Choque Térmico HSP70/química , Proteínas de Choque Térmico HSP70/genética , Concentração de Íons de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Técnicas In Vitro , Cinética , Bicamadas Lipídicas/metabolismo , Camundongos , Fosfatidilinositóis/química , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Eletricidade Estática
4.
Biomolecules ; 9(4)2019 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-30999671

RESUMO

HspA1A is a cytosolic molecular chaperone essential for cellular homeostasis. HspA1A also localizes at the plasma membrane (PM) of tumor and stressed cells. However, it is currently unknown how this cytosolic protein translocates to the PM. Taking into account that HspA1A interacts with lipids, including phosphatidylserine (PS), and that lipids recruit proteins to the PM, we hypothesized that the interaction of HspA1A with PS allows the chaperone to localize at the PM. To test this hypothesis, we subjected cells to mild heat-shock and the PM-localized HspA1A was quantified using confocal microscopy and cell surface biotinylation. These experiments revealed that HspA1A's membrane localization increased during recovery from non-apoptotic heat-shock. Next, we selectively reduced PS targets by overexpressing the C2 domain of lactadherin (Lact-C2), a known PS-biosensor, and determined that HspA1A's membrane localization was greatly reduced. In contrast, the reduction of PI(4,5)P2 availability by overexpression of the PLCδ-PH biosensor had minimal effects on HspA1A's PM-localization. Implementation of a fluorescent PS analog, TopFluor-PS, established that PS co-localizes with HspA1A. Collectively, these results reveal that HspA1A's PM localization and anchorage depend on its selective interaction with intracellular PS. This discovery institutes PS as a new and dynamic partner in the cellular stress response.


Assuntos
Proteínas de Choque Térmico HSP70/metabolismo , Fosfatidilserinas/metabolismo , Membrana Celular/metabolismo , Células HEK293 , Células HeLa , Resposta ao Choque Térmico , Humanos , Fosfatidilinositol 4,5-Difosfato/metabolismo , Transporte Proteico
5.
Sci Rep ; 8(1): 5082, 2018 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-29572464

RESUMO

Several evolutionary mechanisms alter the fate of mutations and genes within populations based on their exhibited functional effects. To understand the underlying mechanisms involved in the evolution of the cellular stress response, a very conserved mechanism in the course of organismal evolution, we studied the patterns of natural genetic variation and functional consequences of polymorphisms of two stress-inducible Hsp70 genes. These genes, HSPA1A and HSPA1B, are major orchestrators of the cellular stress response and are associated with several human diseases. Our phylogenetic analyses revealed that the duplication of HSPA1A and HSPA1B originated in a lineage proceeding to placental mammals, and henceforth they remained in conserved synteny. Additionally, analyses of synonymous and non-synonymous changes suggest that purifying selection shaped the HSPA1 gene diversification, while gene conversion resulted in high sequence conservation within species. In the human HSPA1-cluster, the vast majority of mutations are synonymous and specific genic regions are devoid of mutations. Furthermore, functional characterization of several human polymorphisms revealed subtle differences in HSPA1A stability and intracellular localization. Collectively, the observable patterns of HSPA1A-1B variation describe an evolutionary pattern, in which purifying selection and gene conversion act simultaneously and conserve a major orchestrator of the cellular stress response.


Assuntos
Conversão Gênica , Proteínas de Choque Térmico HSP70/genética , Polimorfismo de Nucleotídeo Único , Animais , Evolução Molecular , Humanos , Filogenia , Sintenia
6.
J Microbiol Biotechnol ; 23(1): 88-91, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23314373

RESUMO

The Cyt1Aa protein of Bacillus thuringiensis subsp. israelensis is known to synergize mosquitocidal proteins of B. thuringiensis and Bacillus sphaericus strains. Cyt1Aa is highly lipophilic, and after binding in vivo to the midgut microvillar membrane serves as a "receptor" for mosquitocidal Cry proteins, which subsequently form cation channels that kill mosquito larvae. Here we report that Cyt1Aa can serve a similar function for lepidopteran-specific Cry proteins of B. thuringiensis in certain mosquito larvae. Engineering Cyt1Aa into the HD-1 isolate of B. thuringiensis subsp. kurstaki enhanced toxicity against 4th instars of Aedes aegypti, but not against 4th instars of Culex quinquefasciatus.


Assuntos
Aedes/fisiologia , Bacillus thuringiensis/patogenicidade , Proteínas de Bactérias/farmacologia , Culex/fisiologia , Endotoxinas/farmacologia , Proteínas Hemolisinas/farmacologia , Inseticidas/farmacologia , Aedes/efeitos dos fármacos , Aedes/microbiologia , Animais , Toxinas de Bacillus thuringiensis , Culex/efeitos dos fármacos , Culex/microbiologia , Larva/efeitos dos fármacos , Larva/microbiologia , Larva/fisiologia , Análise de Sobrevida
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA