Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Immunol ; 211(6): 994-1005, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37556156

RESUMO

Long-lived T-dependent B cell responses fail to develop during persistent infection of mice with Borrelia burgdorferi, the causative agent of Lyme disease, raising questions about the induction and/or functionality of anti-B. burgdorferi adaptive immune responses. Yet, a lack of reagents has limited investigations into B. burgdorferi-specific T and B cells. We attempted two approaches to track B. burgdorferi-induced CD4 T cells. First, a B. burgdorferi mutant was generated with an influenza hemagglutinin (HA) peptide, HA111-119, inserted into the B. burgdorferi arthritis-related protein (Arp) locus. Although this B. burgdorferi arp::HA strain remained infectious, peptide-specific TCR transgenic CD4 T cells in vitro, or adoptively transferred into B. burgdorferi arp::HA-infected BALB/c mice, did not clonally expand above those of recipients infected with the parental B. burgdorferi strain or a B. burgdorferi mutant containing an irrelevant peptide. Some expansion, however, occurred in B. burgdorferi arp::HA-infected BALB/c SCID mice. Second, a (to our knowledge) newly identified I-Ab-restricted CD4 T cell epitope, Arp152-166, was used to generate Arp MHC class II tetramers. Flow cytometry showed small numbers of Arp-specific CD4 T cells emerging in mice infected with B. burgdorferi but not with Arp-deficient Borrelia afzelii. Although up to 30% of Arp-specific CD4 T cells were ICOS+PD-1+CXCR5+BCL6+ T follicular helper cells, their numbers declined after day 12, before germinal centers (GCs) are prominent. Although some Arp-specific B cells, identified using fluorochrome-labeled rArp proteins, had the phenotype of GC B cells, their frequencies did not correlate with anti-Arp serum IgG. The data suggest a failure not in the induction, but in the maintenance of GC T follicular helper and/or B cells to B. burgdorferi.


Assuntos
Borrelia burgdorferi , Doença de Lyme , Camundongos , Animais , Linfócitos T CD4-Positivos , Camundongos SCID , Linfócitos B
2.
J Immunol ; 211(10): 1540-1549, 2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37782044

RESUMO

Infection with Borrelia burgdorferi causes Lyme disease in humans. In small rodents, the natural reservoir species of this spirochete, infections lead to only modest disease manifestations, despite causing persistence infection. Although B cell responses are central for controlling bacterial tissue burden and disease manifestations, they lack classical aspects of T-dependent responses, such as sustained IgG affinity maturation and longevity, corresponding with a rapid collapse of germinal centers. Instead, the Ab response is characterized by strong and ongoing secretion of IgM, whose origins and impact on protective immunity to B. burgdorferi remain unknown. In this article, we demonstrate that B. burgdorferi infection-induced IgM in mice was produced continuously, mainly by conventional B, not B-1 cells, in a T-independent manner. Although IgM was passively protective and restricted early bacteremia, its production had no effects on bacterial dissemination into solid tissues, nor did it affect Borrelia tissue burden. The latter was controlled by the induction of bactericidal IgG, as shown comparing infections in wild type mice with those of mice lacking exclusively secreted IgM-/-, all class-switched Abs via deletion of aicda (AID-/-), and all secreted Abs (secreted IgM-/- × AID-/-). Consistent with the notion that B. burgdorferi infection drives production of IgM over more tissue-penetrable IgG, we demonstrated increased short- and long-term IgM Ab responses also to a coadministered, unrelated Ag. Thus, the continued production of IgM may explain the absence of B. burgdorferi in the blood.


Assuntos
Bacteriemia , Borrelia burgdorferi , Doença de Lyme , Humanos , Camundongos , Animais , Anticorpos Antibacterianos , Imunoglobulina M , Imunoglobulina G
3.
PLoS Pathog ; 11(7): e1004976, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26136236

RESUMO

Lyme Disease caused by infection with Borrelia burgdorferi is an emerging infectious disease and already by far the most common vector-borne disease in the U.S. Similar to many other infections, infection with B. burgdorferi results in strong antibody response induction, which can be used clinically as a diagnostic measure of prior exposure. However, clinical studies have shown a sometimes-precipitous decline of such antibodies shortly following antibiotic treatment, revealing a potential deficit in the host's ability to induce and/or maintain long-term protective antibodies. This is further supported by reports of frequent repeat infections with B. burgdorferi in endemic areas. The mechanisms underlying such a lack of long-term humoral immunity, however, remain unknown. We show here that B. burgdorferi infected mice show a similar rapid disappearance of Borrelia-specific antibodies after infection and subsequent antibiotic treatment. This failure was associated with development of only short-lived germinal centers, micro-anatomical locations from which long-lived immunity originates. These showed structural abnormalities and failed to induce memory B cells and long-lived plasma cells for months after the infection, rendering the mice susceptible to reinfection with the same strain of B. burgdorferi. The inability to induce long-lived immune responses was not due to the particular nature of the immunogenic antigens of B. burgdorferi, as antibodies to both T-dependent and T-independent Borrelia antigens lacked longevity and B cell memory induction. Furthermore, influenza immunization administered at the time of Borrelia infection also failed to induce robust antibody responses, dramatically reducing the protective antiviral capacity of the humoral response. Collectively, these studies show that B. burgdorferi-infection results in targeted and temporary immunosuppression of the host and bring new insight into the mechanisms underlying the failure to develop long-term immunity to this emerging disease threat.


Assuntos
Anticorpos Antibacterianos/imunologia , Borrelia burgdorferi/imunologia , Tolerância Imunológica/imunologia , Imunidade Humoral/imunologia , Doença de Lyme/imunologia , Transferência Adotiva , Animais , Separação Celular , Modelos Animais de Doenças , Citometria de Fluxo , Centro Germinativo/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Transgênicos
4.
Curr Protoc ; 4(8): e1127, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39193882

RESUMO

Lyme disease, a tickborne illness caused by Borrelia burgdorferi, is an emerging, significant public health concern. B. burgdorferi infections are challenging to study because of their complex life cycle that requires adaptation to both ticks and mammalian hosts for long-term survival and transmission. Bacterial adaptation is accomplished through extensive gene expression alterations in response to environmental cues that remain to be more fully explored. Mouse models of infection serve as valuable tools for studying B. burgdorferi adaptation to the mammalian host and the spirochete's ability to cause persistent infections and thus to interact with and evade the immune system. This article details three mouse models that differ in their primary methods of infection: infestation with B. burgdorferi infected ticks, intradermal inoculation of culture-grown spirochetes, and infection via subcutaneous transplantation of infected tissue. Each method offers unique advantages and limitations. Tick infestation is the route of natural transmission but presents logistical challenges. Syringe inoculation is easy and provides precise control over the infectious dose, but infection is with culture-adapted bacteria. Transplantation of infected tissue introduces mammalian-host-adapted B. burgdorferi in precise anatomical locations, but misses the transfer of tick factors affecting immunity. Detailed protocols are provided for each of the three infection routes, and pros and cons of each method are outlined to help researchers identify the best approach for a research question to be addressed. A protocol is also provided for the treatment of mice with antibiotics that reliably eliminates detectable spirochetes from the animals. © 2024 Wiley Periodicals LLC. Basic Protocol 1: Syringe inoculation of mice with cultured B. burgdorferi and collection of necropsy tissues Basic Protocol 2: Infection of mice with B. burgdorferi via tick infestation Basic Protocol 3: Infection of mice with host-adapted B. burgdorferi via tissue transplant Support Protocol: Clearance of B. burgdorferi by antibiotic treatment.


Assuntos
Borrelia burgdorferi , Modelos Animais de Doenças , Doença de Lyme , Animais , Borrelia burgdorferi/fisiologia , Borrelia burgdorferi/patogenicidade , Doença de Lyme/microbiologia , Doença de Lyme/transmissão , Doença de Lyme/imunologia , Camundongos , Carrapatos/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA