Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Clin Infect Dis ; 78(2): 269-276, 2024 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-37874928

RESUMO

BACKGROUND: Emerging resistance to bedaquiline (BDQ) threatens to undermine advances in the treatment of drug-resistant tuberculosis (DRTB). Characterizing serial Mycobacterium tuberculosis (Mtb) isolates collected during BDQ-based treatment can provide insights into the etiologies of BDQ resistance in this important group of DRTB patients. METHODS: We measured mycobacteria growth indicator tube (MGIT)-based BDQ minimum inhibitory concentrations (MICs) of Mtb isolates collected from 195 individuals with no prior BDQ exposure who were receiving BDQ-based treatment for DRTB. We conducted whole-genome sequencing on serial Mtb isolates from all participants who had any isolate with a BDQ MIC >1 collected before or after starting treatment (95 total Mtb isolates from 24 participants). RESULTS: Sixteen of 24 participants had BDQ-resistant TB (MGIT MIC ≥4 µg/mL) and 8 had BDQ-intermediate infections (MGIT MIC = 2 µg/mL). Participants with pre-existing resistance outnumbered those with resistance acquired during treatment, and 8 of 24 participants had polyclonal infections. BDQ resistance was observed across multiple Mtb strain types and involved a diverse catalog of mmpR5 (Rv0678) mutations, but no mutations in atpE or pepQ. Nine pairs of participants shared genetically similar isolates separated by <5 single nucleotide polymorphisms, concerning for potential transmitted BDQ resistance. CONCLUSIONS: BDQ-resistant TB can arise via multiple, overlapping processes, including transmission of strains with pre-existing resistance. Capturing the within-host diversity of these infections could potentially improve clinical diagnosis, population-level surveillance, and molecular diagnostic test development.


Assuntos
Mycobacterium tuberculosis , Tuberculose Resistente a Múltiplos Medicamentos , Tuberculose , Humanos , Antituberculosos/farmacologia , Antituberculosos/uso terapêutico , Diarilquinolinas/farmacologia , Diarilquinolinas/uso terapêutico , Tuberculose/tratamento farmacológico , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Tuberculose Resistente a Múltiplos Medicamentos/microbiologia , Genótipo , Fenótipo , Testes de Sensibilidade Microbiana
2.
J Clin Microbiol ; 62(8): e0022924, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39058018

RESUMO

Drug-resistant tuberculosis (TB) poses a significant public health concern in South Africa due to its complexity in diagnosis, treatment, and management. This study assessed the diagnostic performance of the Xpert MTB/XDR test for detecting drug resistance in patients with TB by using archived sputum sediments. This study analyzed 322 samples collected from patients diagnosed with TB between 2016 and 2019 across South Africa, previously characterized by phenotypic and genotypic methods. The Xpert MTB/XDR test was evaluated for its ability to detect resistance to isoniazid (INH), ethionamide (ETH), fluoroquinolones (FLQ), and second-line injectable drugs (SLIDs) compared with phenotypic drug susceptibility testing (pDST) and whole-genome sequencing (WGS). Culture, Xpert MTB/RIF Ultra, and Xpert MTB/RIF (G4) tests were performed to determine sensitivity and agreement with this test for TB detection. The sensitivities using a composite reference standard, pDST, and sequencing were >90% for INH, FLQ, amikacin (AMK), kanamycin (KAN), and capreomycin (CAP) resistance, meeting the WHO target product profile criteria for this class. A lower sensitivity of 65.9% (95% CI: 57.1-73.6) for ETH resistance was observed. The Xpert MTB/XDR showed a sensitivity of 98.3% (95% CI: 96.1-99.3) and specificity of 100% (95% CI: 86.7-100) compared with culture, a positive percent agreement (PPA) of 98.8% (95% CI: 93.7-99.8) and negative percent agreement (NPA) of 100.0% (95% CI: 78.5-100.0) compared with G4, and a PPA of 99.5% (95% CI: 97.3-99.9) and NPA of 100.0% (95% CI: 78.5-100.0) compared with Xpert MTB/RIF Ultra for detecting Mycobacterium tuberculosis. The test offers a promising solution for the rapid detection of drug-resistant TB and could significantly enhance control efforts in this setting.


Assuntos
Antituberculosos , Testes de Sensibilidade Microbiana , Mycobacterium tuberculosis , Sensibilidade e Especificidade , Humanos , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/genética , África do Sul , Antituberculosos/farmacologia , Tuberculose Resistente a Múltiplos Medicamentos/diagnóstico , Tuberculose Resistente a Múltiplos Medicamentos/microbiologia , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Tuberculose Extensivamente Resistente a Medicamentos/diagnóstico , Tuberculose Extensivamente Resistente a Medicamentos/microbiologia , Tuberculose Extensivamente Resistente a Medicamentos/tratamento farmacológico , Escarro/microbiologia , Sequenciamento Completo do Genoma , Técnicas de Diagnóstico Molecular/métodos , Farmacorresistência Bacteriana Múltipla
3.
BMC Public Health ; 23(1): 2329, 2023 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-38001453

RESUMO

BACKGROUND: Drug-resistant tuberculosis (DR-TB) epidemic is driven mainly by the effect of ongoing transmission. In high-burden settings such as South Africa (SA), considerable demographic and geographic heterogeneity in DR-TB transmission exists. Thus, a better understanding of risk-factors for clustering can help to prioritise resources to specifically targeted high-risk groups as well as areas that contribute disproportionately to transmission. METHODS: The study analyzed potential risk-factors for recent transmission in SA, using data collected from a sentinel molecular surveillance of DR-TB, by comparing demographic, clinical and epidemiologic characteristics with clustering and cluster sizes. A genotypic cluster was defined as two or more patients having identical patterns by the two genotyping methods used. Clustering was used as a proxy for recent transmission. Descriptive statistics and multinomial logistic regression were used. RESULT: The study identified 277 clusters, with cluster size ranging between 2 and 259 cases. The majority (81.6%) of the clusters were small (2-5 cases) with few large (11-25 cases) and very large (≥ 26 cases) clusters identified mainly in Western Cape (WC), Eastern Cape (EC) and Mpumalanga (MP). In a multivariable model, patients in clusters including 11-25 and ≥ 26 individuals were more likely to be infected by Beijing family, have XDR-TB, living in Nelson Mandela Metro in EC or Umgungunglovo in Kwa-Zulu Natal (KZN) provinces, and having history of imprisonment. Individuals belonging in a small genotypic cluster were more likely to infected with Rifampicin resistant TB (RR-TB) and more likely to reside in Frances Baard in Northern Cape (NC). CONCLUSION: Sociodemographic, clinical and bacterial risk-factors influenced rate of Mycobacterium tuberculosis (M. tuberculosis) genotypic clustering. Hence, high-risk groups and hotspot areas for clustering in EC, WC, KZN and MP should be prioritized for targeted intervention to prevent ongoing DR-TB transmission.


Assuntos
Mycobacterium tuberculosis , Tuberculose Resistente a Múltiplos Medicamentos , Humanos , África do Sul/epidemiologia , Tuberculose Resistente a Múltiplos Medicamentos/epidemiologia , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Mycobacterium tuberculosis/genética , Fatores de Risco , Análise por Conglomerados , Antituberculosos/uso terapêutico
4.
J Clin Microbiol ; 60(1): e0291920, 2022 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-34705538

RESUMO

Bedaquiline Drug Resistance Emergence Assessment in Multidrug-resistant tuberculosis (MDR-TB) (DREAM) was a 5-year (2015 to 2019) phenotypic drug resistance surveillance study across 11 countries. DREAM assessed the susceptibility of 5,036 MDR-TB isolates of bedaquiline treatment-naive patients to bedaquiline and other antituberculosis drugs by the 7H9 broth microdilution (BMD) and 7H10/7H11 agar dilution (AD) MIC methods. Bedaquiline AD MIC quality control (QC) range for the H37Rv reference strain was unchanged, but the BMD MIC QC range (0.015 to 0.12 µg/ml) was adjusted compared with ranges from a multilaboratory, multicountry reproducibility study conforming to Clinical and Laboratory Standards Institute Tier-2 criteria. Epidemiological cutoff values of 0.12 µg/ml by BMD and 0.25 µg/ml by AD were consistent with previous bedaquiline breakpoints. An area of technical uncertainty or intermediate category was set at 0.25 µg/ml and 0.5 µg/ml for BMD and AD, respectively. When applied to the 5,036 MDR-TB isolates, bedaquiline-susceptible, -intermediate, and -resistant rates were 97.9%, 1.5%, and 0.6%, respectively, for BMD and 98.8%, 0.8%, and 0.4% for AD. Resistance rates were the following: 35.1% ofloxacin, 34.2% levofloxacin, 33.3% moxifloxacin, 1.5% linezolid, and 2% clofazimine. Phenotypic cross-resistance between bedaquiline and clofazimine was 0.4% in MDR-TB and 1% in pre-extensively drug-resistant (pre-XDR-TB)/XDR-TB populations. Coresistance to bedaquiline and linezolid and clofazimine and linezolid were 0.1% and 0.3%, respectively, in MDR-TB and 0.2% and 0.4%, respectively, in pre-XDR-TB/XDR-TB populations. Resistance rates to bedaquiline appear to be low in the bedaquiline-treatment-naive population. No treatment-limiting patterns for cross-resistance and coresistance have been identified with key TB drugs to date.


Assuntos
Mycobacterium tuberculosis , Tuberculose Resistente a Múltiplos Medicamentos , Antituberculosos/farmacologia , Diarilquinolinas/farmacologia , Resistência a Medicamentos , Humanos , Testes de Sensibilidade Microbiana , Estudos Prospectivos , Reprodutibilidade dos Testes , Tuberculose Resistente a Múltiplos Medicamentos/epidemiologia
5.
BMC Infect Dis ; 22(1): 870, 2022 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-36414938

RESUMO

BACKGROUND: This retrospective cohort study assessed benefits and risks of bedaquiline treatment in multidrug-resistant-tuberculosis (MDR-TB) combination therapy by evaluating safety, effectiveness, drug utilization and emergence of resistance to bedaquiline. METHODS: Data were extracted from a register of South African drug-resistant-tuberculosis (DR-TB) patients (Electronic DR-TB Register [EDRWeb]) for newly diagnosed patients with MDR-TB (including pre-extensively drug-resistant [XDR]-TB and XDR-TB and excluding rifampicin-mono-resistant [RR]-TB, as these patients are by definition not multidrug-resistant), receiving either a bedaquiline-containing or non-bedaquiline-containing regimen, at 14 sites in South Africa. Total duration of treatment and follow-up was up to 30 months, including 6 months' bedaquiline treatment. WHO treatment outcomes within 6 months after end-of-treatment were assessed in both patient groups. Longer term mortality (up to 30 months from treatment start) was evaluated through matching to the South African National Vital Statistics Register. Multivariable Cox proportional hazards analyses were used to predict association between receiving a bedaquiline-containing regimen and treatment outcome. RESULTS: Data were extracted from EDRWeb for 5981 MDR-TB patients (N = 3747 bedaquiline-treated; N = 2234 non-bedaquiline-treated) who initiated treatment between 2015 and 2017, of whom 40.7% versus 80.6% had MDR-TB. More bedaquiline-treated than non-bedaquiline-treated patients had pre-XDR-TB (27.7% versus 9.5%) and XDR-TB (31.5% versus 9.9%) per pre-2021 WHO definitions. Most patients with treatment duration data (94.3%) received bedaquiline for 6 months. Treatment success (per pre-2021 WHO definitions) was achieved in 66.9% of bedaquiline-treated and 49.4% of non-bedaquiline-treated patients. Death was reported in fewer bedaquiline-treated (15.4%) than non-bedaquiline-treated (25.6%) patients. Bedaquiline-treated patients had increased likelihood of treatment success and decreased risk of mortality versus non-bedaquiline-treated patients. In patients with evaluable drug susceptibility testing data, 3.5% of bedaquiline-susceptible isolates at baseline acquired phenotypic resistance. Few patients reported bedaquiline-related treatment-emergent adverse events (TEAEs) (1.8%), TEAE-related bedaquiline discontinuations (1.4%) and QTcF values > 500 ms (2.5%) during treatment. CONCLUSION: Data from this large cohort of South African patients with MDR-TB showed treatment with bedaquiline-containing regimens was associated with survival and effectiveness benefit compared with non-bedaquiline-containing regimens. No new safety signals were detected. These data are consistent with the positive risk-benefit profile of bedaquiline and warrant continued implementation in combination therapy for MDR-TB treatment.


Assuntos
Tuberculose Extensivamente Resistente a Medicamentos , Mycobacterium tuberculosis , Tuberculose Resistente a Múltiplos Medicamentos , Humanos , Tuberculose Extensivamente Resistente a Medicamentos/tratamento farmacológico , Estudos Retrospectivos , África do Sul , Testes de Sensibilidade Microbiana , Antituberculosos/efeitos adversos , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Estudos de Coortes
6.
Proc Natl Acad Sci U S A ; 116(46): 23284-23291, 2019 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-31659018

RESUMO

Antimicrobial-resistant (AMR) infections pose a major threat to global public health. Similar to other AMR pathogens, both historical and ongoing drug-resistant tuberculosis (TB) epidemics are characterized by transmission of a limited number of predominant Mycobacterium tuberculosis (Mtb) strains. Understanding how these predominant strains achieve sustained transmission, particularly during the critical period before they are detected via clinical or public health surveillance, can inform strategies for prevention and containment. In this study, we employ whole-genome sequence (WGS) data from TB clinical isolates collected in KwaZulu-Natal, South Africa to examine the pre-detection history of a successful strain of extensively drug-resistant (XDR) TB known as LAM4/KZN, first identified in a widely reported cluster of cases in 2005. We identify marked expansion of this strain concurrent with the onset of the generalized HIV epidemic 12 y prior to 2005, localize its geographic origin to a location in northeastern KwaZulu-Natal ∼400 km away from the site of the 2005 outbreak, and use protein structural modeling to propose a mechanism for how strain-specific rpoB mutations offset fitness costs associated with rifampin resistance in LAM4/KZN. Our findings highlight the importance of HIV coinfection, high preexisting rates of drug-resistant TB, human migration, and pathoadaptive evolution in the emergence and dispersal of this critical public health threat. We propose that integrating whole-genome sequencing into routine public health surveillance can enable the early detection and local containment of AMR pathogens before they achieve widespread dispersal.


Assuntos
Evolução Molecular , Tuberculose Extensivamente Resistente a Medicamentos/genética , Mycobacterium tuberculosis/genética , Tuberculose Extensivamente Resistente a Medicamentos/epidemiologia , Genoma Bacteriano , Infecções por HIV/complicações , Humanos , Filogenia , Filogeografia , Estudos Prospectivos , África do Sul/epidemiologia , Sequenciamento Completo do Genoma
7.
Clin Infect Dis ; 73(11): 2083-2092, 2021 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-33882121

RESUMO

BACKGROUND: Bedaquiline improves treatment outcomes in patients with rifampin-resistant (RR) tuberculosis but prolongs the QT interval and carries a black-box warning from the US Food and Drug Administration. The World Health Organization recommends that all patients with RR tuberculosis receive a regimen containing bedaquiline, yet a phase 3 clinical trial demonstrating its cardiac safety has not been published. METHODS: We conducted an observational cohort study of patients with RR tuberculosis from 3 provinces in South Africa who received regimens containing bedaquiline. We performed rigorous cardiac monitoring, which included obtaining electrocardiograms in triplicate at 4 time points during bedaquiline therapy. Participants were followed up until the end of therapy or 24 months. Outcomes included final tuberculosis treatment outcome and QT interval prolongation (QT prolongation), defined as any QT interval corrected by the Fridericia method (QTcF) >500 ms or an absolute change from baseline (ΔQTcF) >60 ms. RESULTS: We enrolled 195 eligible participants, of whom 40% had extensively drug-resistant tuberculosis. Most participants (97%) received concurrent clofazimine. Of the participants, 74% were cured or successfully completed treatment, and outcomes did not differ by human immunodeficiency virus status. QTcF continued to increase throughout bedaquiline therapy, with a mean increase (standard deviation) of 23.7 (22.7) ms from baseline to month 6. Four participants experienced a QTcF >500 ms and 19 experienced a ΔQTcF >60 ms. Older age was independently associated with QT prolongation. QT prolongation was neither more common nor more severe in participants receiving concurrent lopinavir-ritonavir. CONCLUSIONS: Severe QT prolongation was uncommon and did not require permanent discontinuation of either bedaquiline or clofazimine. Close monitoring of the QT interval may be advisable in older patients.


Assuntos
Tuberculose Extensivamente Resistente a Medicamentos , Tuberculose Resistente a Múltiplos Medicamentos , Idoso , Antituberculosos/efeitos adversos , Estudos de Coortes , Diarilquinolinas/efeitos adversos , Tuberculose Extensivamente Resistente a Medicamentos/tratamento farmacológico , Humanos , Estudos Prospectivos , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico
8.
BMC Microbiol ; 21(1): 157, 2021 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-34044775

RESUMO

BACKGROUND: Studies have shown that drug-resistant tuberculosis (DR-TB) in South Africa (SA) is clonal and is caused mostly by transmission. Identifying transmission chains is important in controlling DR-TB. This study reports on the sentinel molecular surveillance data of Rifampicin-Resistant (RR) TB in SA, aiming to describe the RR-TB strain population and the estimated transmission of RR-TB cases. METHOD: RR-TB isolates collected between 2014 and 2018 from eight provinces were genotyped using combination of spoligotyping and 24-loci mycobacterial interspersed repetitive-units-variable-number tandem repeats (MIRU-VNTR) typing. RESULTS: Of the 3007 isolates genotyped, 301 clusters were identified. Cluster size ranged between 2 and 270 cases. Most of the clusters (247/301; 82.0%) were small in size (< 5 cases), 12.0% (37/301) were medium sized (5-10 cases), 3.3% (10/301) were large (11-25 cases) and 2.3% (7/301) were very large with 26-270 cases. The Beijing genotype was responsible for majority of RR-TB cases in Western and Eastern Cape, while the East-African-Indian-Somalian (EAI1_SOM) genotype accounted for a third of RR-TB cases in Mpumalanga. The overall proportion of RR-TB cases estimated to be due to transmission was 42%, with the highest transmission-rate in Western Cape (64%) and the lowest in Northern Cape (9%). CONCLUSION: Large clusters contribute to the burden of RR-TB in specific geographic areas such as Western Cape, Eastern Cape and Mpumalanga, highlighting the need for community-wide interventions. Most of the clusters identified in the study were small, suggesting close contact transmission events, emphasizing the importance of contact investigations and infection control as the primary interventions in SA.


Assuntos
Mycobacterium tuberculosis/efeitos dos fármacos , Tuberculose Resistente a Múltiplos Medicamentos/microbiologia , Antituberculosos/farmacologia , Farmacorresistência Bacteriana , Genótipo , Humanos , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/isolamento & purificação , Reação em Cadeia da Polimerase , Rifampina/farmacologia , África do Sul , Tuberculose Resistente a Múltiplos Medicamentos/transmissão
9.
Clin Infect Dis ; 70(11): 2396-2402, 2020 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-31342067

RESUMO

BACKGROUND: Tuberculosis (TB) is the leading infectious cause of death globally, and drug-resistant TB strains pose a serious threat to controlling the global TB epidemic. The clinical features, locations, and social factors driving transmission in settings with high incidences of drug-resistant TB are poorly understood. METHODS: We measured a network of genomic links using Mycobacterium tuberculosis whole-genome sequences. RESULTS: Patients with 2-3 months of cough or who spent time in urban locations were more likely to be linked in the network, while patients with sputum smear-positive disease were less likely to be linked than those with smear-negative disease. Associations persisted using different thresholds to define genomic links and irrespective of assumptions about the direction of transmission. CONCLUSIONS: Identifying factors that lead to many transmissions, including contact with urban areas, can suggest settings instrumental in transmission and indicate optimal locations and groups to target with interventions.


Assuntos
Tuberculose Extensivamente Resistente a Medicamentos , Mycobacterium tuberculosis , Tuberculose Resistente a Múltiplos Medicamentos , Antituberculosos/uso terapêutico , Tuberculose Extensivamente Resistente a Medicamentos/tratamento farmacológico , Humanos , Mycobacterium tuberculosis/genética , África do Sul/epidemiologia , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico
10.
Am J Epidemiol ; 189(7): 735-745, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32242216

RESUMO

Patterns of transmission of drug-resistant tuberculosis (TB) remain poorly understood, despite over half a million incident cases worldwide in 2017. Modeling TB transmission networks can provide insight into drivers of transmission, but incomplete sampling of TB cases can pose challenges for inference from individual epidemiologic and molecular data. We assessed the effect of missing cases on a transmission network inferred from Mycobacterium tuberculosis sequencing data on extensively drug-resistant TB cases in KwaZulu-Natal, South Africa, diagnosed in 2011-2014. We tested scenarios in which cases were missing at random, missing differentially by clinical characteristics, or missing differentially by transmission (i.e., cases with many links were under- or oversampled). Under the assumption that cases were missing randomly, the mean number of transmissions per case in the complete network needed to be larger than 20, far higher than expected, to reproduce the observed network. Instead, the most likely scenario involved undersampling of high-transmitting cases, and models provided evidence for super-spreading. To our knowledge, this is the first analysis to have assessed support for different mechanisms of missingness in a TB transmission study, but our results are subject to the distributional assumptions of the network models we used. Transmission studies should consider the potential biases introduced by incomplete sampling and identify host, pathogen, or environmental factors driving super-spreading.


Assuntos
Transmissão de Doença Infecciosa/estatística & dados numéricos , Tuberculose Extensivamente Resistente a Medicamentos/epidemiologia , Tuberculose Extensivamente Resistente a Medicamentos/transmissão , Modelos Estatísticos , Vigilância da População/métodos , Feminino , Humanos , Incidência , Masculino , Mycobacterium tuberculosis , África do Sul/epidemiologia
11.
Artigo em Inglês | MEDLINE | ID: mdl-32660992

RESUMO

Criteria defining bedaquiline resistance for tuberculosis have been proposed addressing an emerging concern. We evaluated bedaquiline phenotypic drug susceptibility testing (pDST) criteria using drug-resistant tuberculosis clinical isolates tested at five reference laboratories. Isolates were tested at the proposed bedaquiline MGIT960 and 7H11 agar proportion (AP) critical concentrations and also at higher dilutions. The epidemiological cutoff value for the broth microdilution (BMD) plates (frozen and dry) was investigated. Sanger sequencing was performed (atpE and Rv0678 genes) for any isolate testing resistant. The composite reference standard (CRS) defined susceptibility or resistance as is if all pDST methods agreed. If the pDST result was discordant, sequencing results were used for final classification. Geographically diverse and bedaquiline-unexposed isolates were tested (n = 495). The epidemiological cutoff value for BMD was confirmed to be 0.12 µg/ml. The majority of isolates were determined to be susceptible by all methods (467/495; 94.3%), and 28 were determined to be resistant by at least one method; 4 of these were determined to be resistant by all methods. Of the 28 resistant isolates, 12 harbored Rv0678 mutations exclusively. Isolates with insertions/deletions were more likely to be determined to be resistant by more than one method (5/7) compared to isolates with a single nucleotide polymorphism (1/5). Applying the CRS to 24 discordant pDST, BMD dry correctly detected most (15/24; 63%), followed by MGIT960 and BMD frozen (13/24; 61%) and lastly AP (12/24; 50%). Applying the CRS, the prevalence of bedaquiline resistance was 2.2% and ranged from 1.4 to 3.4%, depending on the method used. All methods performed well for bedaquiline susceptibility determination; however, resistance detected should be investigated by a second, alternative method.


Assuntos
Mycobacterium tuberculosis , Tuberculose Resistente a Múltiplos Medicamentos , Antituberculosos/farmacologia , Antituberculosos/uso terapêutico , Diarilquinolinas/farmacologia , Humanos , Testes de Sensibilidade Microbiana , Mycobacterium tuberculosis/genética , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico
13.
N Engl J Med ; 376(3): 243-253, 2017 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-28099825

RESUMO

BACKGROUND: Drug-resistant tuberculosis threatens recent gains in the treatment of tuberculosis and human immunodeficiency virus (HIV) infection worldwide. A widespread epidemic of extensively drug-resistant (XDR) tuberculosis is occurring in South Africa, where cases have increased substantially since 2002. The factors driving this rapid increase have not been fully elucidated, but such knowledge is needed to guide public health interventions. METHODS: We conducted a prospective study involving 404 participants in KwaZulu-Natal Province, South Africa, with a diagnosis of XDR tuberculosis between 2011 and 2014. Interviews and medical-record reviews were used to elicit information on the participants' history of tuberculosis and HIV infection, hospitalizations, and social networks. Mycobacterium tuberculosis isolates underwent insertion sequence (IS)6110 restriction-fragment-length polymorphism analysis, targeted gene sequencing, and whole-genome sequencing. We used clinical and genotypic case definitions to calculate the proportion of cases of XDR tuberculosis that were due to inadequate treatment of multidrug-resistant (MDR) tuberculosis (i.e., acquired resistance) versus those that were due to transmission (i.e., transmitted resistance). We used social-network analysis to identify community and hospital locations of transmission. RESULTS: Of the 404 participants, 311 (77%) had HIV infection; the median CD4+ count was 340 cells per cubic millimeter (interquartile range, 117 to 431). A total of 280 participants (69%) had never received treatment for MDR tuberculosis. Genotypic analysis in 386 participants revealed that 323 (84%) belonged to 1 of 31 clusters. Clusters ranged from 2 to 14 participants, except for 1 large cluster of 212 participants (55%) with a LAM4/KZN strain. Person-to-person or hospital-based epidemiologic links were identified in 123 of 404 participants (30%). CONCLUSIONS: The majority of cases of XDR tuberculosis in KwaZulu-Natal, South Africa, an area with a high tuberculosis burden, were probably due to transmission rather than to inadequate treatment of MDR tuberculosis. These data suggest that control of the epidemic of drug-resistant tuberculosis requires an increased focus on interrupting transmission. (Funded by the National Institute of Allergy and Infectious Diseases and others.).


Assuntos
Antituberculosos/uso terapêutico , Tuberculose Extensivamente Resistente a Medicamentos/transmissão , Mycobacterium tuberculosis/genética , Infecções Oportunistas Relacionadas com a AIDS/tratamento farmacológico , Infecções Oportunistas Relacionadas com a AIDS/epidemiologia , Infecções Oportunistas Relacionadas com a AIDS/transmissão , Adolescente , Adulto , Contagem de Linfócito CD4 , Criança , Tuberculose Extensivamente Resistente a Medicamentos/complicações , Tuberculose Extensivamente Resistente a Medicamentos/epidemiologia , Tuberculose Extensivamente Resistente a Medicamentos/microbiologia , Feminino , Infecções por HIV/complicações , Humanos , Masculino , Pessoa de Meia-Idade , Filogenia , Polimorfismo de Nucleotídeo Único , Estudos Prospectivos , Apoio Social , África do Sul/epidemiologia , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Adulto Jovem
14.
J Clin Microbiol ; 58(4)2020 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-31969421

RESUMO

Drug-resistant tuberculosis persists as a major public health concern. Alongside efficacious treatments, validated and standardized drug susceptibility testing (DST) is required to improve patient care. This multicountry, multilaboratory external quality assessment (EQA) study aimed to validate the sensitivity, specificity, and reproducibility of provisional bedaquiline MIC breakpoints and World Health Organization interim critical concentrations (CCs) for categorizing clinical Mycobacterium tuberculosis isolates as susceptible/resistant to the drug. Three methods were used: Middlebrook 7H11 agar proportion (AP) assay, broth microdilution (BMD) assay, and mycobacterial growth indicator tube (MGIT) assay. Each of the five laboratories tested the 40-isolate (20 unique isolates, duplicated) EQA panel at three time points. The study validated the sensitivity and specificity of a bedaquiline MIC susceptibility breakpoint of 0.12 µg/ml for the BMD method and WHO interim CCs of 1 µg/ml for MGIT and 0.25 µg/ml for the 7H11 AP methods. Categorical agreements between observed and expected results and sensitivities/specificities for correctly identifying an isolate as susceptible/resistant were highest at the 0.25, 0.12, and 1 µg/ml bedaquiline concentrations for the AP method, BMD (frozen or dry plates), and MGIT960, respectively. At these concentrations, the very major error rates for erroneously categorizing an isolate as susceptible when it was resistant were the lowest and within CLSI guidelines. The most highly reproducible bedaquiline DST methods were MGIT960 and BMD using dry plates. These findings validate the use of standardized DST methodologies and interpretative criteria to facilitate routine phenotypic bedaquiline DST and to monitor the emergence of bedaquiline resistance.


Assuntos
Mycobacterium tuberculosis , Preparações Farmacêuticas , Antituberculosos/farmacologia , Diarilquinolinas , Humanos , Testes de Sensibilidade Microbiana , Reprodutibilidade dos Testes
15.
Artigo em Inglês | MEDLINE | ID: mdl-31138569

RESUMO

Bedaquiline resistance within Mycobacterium tuberculosis may arise through efflux-based (rv0678) or target-based (atpE) pathway mutations. M. tuberculosis mutant populations from each of five sequential steps in a passaging approach, using a pyrazinamide-resistant ATCC strain, were subjected to MIC determinations and whole-genome sequencing. Exposure to increasing bedaquiline concentrations resulted in increasing phenotypic resistance (up to >2 µg/ml) through MIC determination on solid medium (Middlebrook 7H10). rv0678 mutations were dynamic, while atpE mutations were fixed, once occurring. We present the following hypothesis for in vitro emergence of bedaquiline resistance: rv0678 mutations may be the first transient step in low-level resistance acquisition, followed by high-level resistance due to fixed atpE mutations.


Assuntos
Proteínas de Bactérias/genética , Diarilquinolinas/farmacologia , Farmacorresistência Bacteriana/efeitos dos fármacos , Mutação , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/genética , Antituberculosos/farmacologia , ATPases Bacterianas Próton-Translocadoras/genética , Farmacorresistência Bacteriana/genética , Testes de Sensibilidade Microbiana
16.
Artigo em Inglês | MEDLINE | ID: mdl-30642938

RESUMO

Six in vitro clofazimine-resistant spontaneous mutants obtained from a wild-type or pyrazinamide-resistant ATCC reference strain were selected to evaluate bedaquiline cross-resistance. The reverse was conducted for bedaquiline mutants. All clofazimine mutants harboring an rv0678 mutation displayed phenotypic cross-resistance. We observed the same for rv0678 bedaquiline mutants; however, atpE bedaquiline mutants showed no phenotypic cross-resistance. This confirms that upfront clofazimine usage may impact subsequent bedaquiline use due to a shared efflux resistance pathway.


Assuntos
Antituberculosos/farmacologia , Clofazimina/farmacologia , Diarilquinolinas/farmacologia , Proteínas de Membrana Transportadoras/genética , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/genética , Farmacorresistência Bacteriana Múltipla/genética , Testes de Sensibilidade Microbiana , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Tuberculose Resistente a Múltiplos Medicamentos/genética
18.
J Antimicrob Chemother ; 74(8): 2377-2384, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31081017

RESUMO

OBJECTIVES: Limited data exist on clinical associations and genotypic correlates of linezolid resistance in Mycobacterium tuberculosis. We aimed to describe mutations and clinical factors associated with phenotypic linezolid resistance from patients with drug-resistant TB at two public sector facilities in South Africa. METHODS: Adults and adolescents with treatment failure (culture positivity ≥4 months) on a linezolid-containing regimen were retrospectively identified. Phenotypic resistance, as defined by a linezolid MIC >1 mg/L, was assessed for retrieved isolates using broth microdilution. Targeted sequencing of rrl and rplC was performed, irrespective of growth on subculture. RESULTS: Thirty-nine patients with linezolid-based treatment failure were identified, 13 (33%) of whom had phenotypic or genotypic linezolid resistance after a median duration of 22 months (range = 7-32) of linezolid therapy. Paired MIC testing and genotyping was performed on 55 unique isolates. All isolates with phenotypic resistance (n = 16) were associated with known resistance mutations, most frequently due to the T460C substitution in rplC (n = 10); rrl mutations included G2814T, G2270C/T and A2810C. No mutations were detected in isolates with MICs at or below the critical concentration. CONCLUSIONS: Linezolid resistance occurred in a third of patients with drug-resistant TB and treatment failure. Resistance occurred late and was predicted by a limited number of mutations in rrl and rplC. Screening for genotypic resistance should be considered for patients with a positive culture after 4 months of linezolid therapy in order to optimize treatment and avoid the toxicity of ineffective linezolid therapy.


Assuntos
Antibacterianos/farmacologia , Farmacorresistência Bacteriana , Linezolida/farmacologia , Mycobacterium tuberculosis/efeitos dos fármacos , Falha de Tratamento , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Tuberculose Resistente a Múltiplos Medicamentos/microbiologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Genes Bacterianos , Genótipo , Humanos , Masculino , Testes de Sensibilidade Microbiana , Pessoa de Meia-Idade , Mycobacterium tuberculosis/classificação , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/isolamento & purificação , Estudos Retrospectivos , Análise de Sequência de DNA , África do Sul , Adulto Jovem
19.
J Infect Dis ; 218(12): 1964-1973, 2018 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-29961879

RESUMO

Background: Transmission is driving the global drug-resistant tuberculosis (TB) epidemic; nearly three-quarters of drug-resistant TB cases are attributable to transmission. Geographic patterns of disease incidence, combined with information on probable transmission links, can define the spatial scale of transmission and generate hypotheses about factors driving transmission patterns. Methods: We combined whole-genome sequencing data with home Global Positioning System coordinates from 344 participants with extensively drug-resistant (XDR) TB in KwaZulu-Natal, South Africa, diagnosed from 2011 to 2014. We aimed to determine if genomically linked (difference of ≤5 single-nucleotide polymorphisms) cases lived close to one another, which would suggest a role for local community settings in transmission. Results: One hundred eighty-two study participants were genomically linked, comprising 1084 case-pairs. The median distance between case-pairs' homes was 108 km (interquartile range, 64-162 km). Between-district, as compared to within-district, links accounted for the majority (912/1084 [84%]) of genomic links. Half (526 [49%]) of genomic links involved a case from Durban, the urban center of KwaZulu-Natal. Conclusions: The high proportions of between-district links with Durban provide insight into possible drivers of province-wide XDR-TB transmission, including urban-rural migration. Further research should focus on characterizing the contribution of these drivers to overall XDR-TB transmission in KwaZulu-Natal to inform design of targeted strategies to curb the drug-resistant TB epidemic.


Assuntos
Antituberculosos/uso terapêutico , Tuberculose Extensivamente Resistente a Medicamentos/epidemiologia , Tuberculose Extensivamente Resistente a Medicamentos/transmissão , Mycobacterium tuberculosis/efeitos dos fármacos , Adolescente , Adulto , Antituberculosos/farmacologia , Criança , Pré-Escolar , Tuberculose Extensivamente Resistente a Medicamentos/tratamento farmacológico , Feminino , Genômica , Humanos , Lactente , Masculino , Pessoa de Meia-Idade , Mycobacterium tuberculosis/genética , África do Sul/epidemiologia , Adulto Jovem
20.
Eur Respir J ; 52(4)2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30115614

RESUMO

Despite evidence that transmission is driving an extensively drug-resistant TB (XDR-TB) epidemic, our understanding of where and between whom transmission occurs is limited. We sought to determine whether there was genomic evidence of transmission between individuals without an epidemiologic connection.We conducted a prospective study of XDR-TB patients in KwaZulu-Natal, South Africa, during the 2011-2014 period. We collected sociodemographic and clinical data, and identified epidemiologic links based on person-to-person or hospital-based connections. We performed whole-genome sequencing (WGS) on the Mycobacterium tuberculosis isolates and determined pairwise single nucleotide polymorphism (SNP) differences.Among 404 participants, 123 (30%) had person-to-person or hospital-based links, leaving 281 (70%) epidemiologically unlinked. The median SNP difference between participants with person-to-person and hospital-based links was 10 (interquartile range (IQR) 8-24) and 16 (IQR 10-23), respectively. The median SNP difference between unlinked participants and their closest genomic link was 5 (IQR 3-9) and half of unlinked participants were within 7 SNPs of at least five participants.The majority of epidemiologically-unlinked XDR-TB patients had low pairwise SNP differences with at least one other participant, consistent with transmission. These data suggest that much of transmission may result from casual contact in community settings between individuals not known to one another.


Assuntos
Tuberculose Extensivamente Resistente a Medicamentos/genética , Tuberculose Extensivamente Resistente a Medicamentos/transmissão , Mycobacterium tuberculosis/isolamento & purificação , Adulto , Antituberculosos/uso terapêutico , Feminino , Genômica , Humanos , Masculino , Testes de Sensibilidade Microbiana , Mycobacterium tuberculosis/genética , Polimorfismo de Nucleotídeo Único , Estudos Prospectivos , África do Sul/epidemiologia , Sequenciamento Completo do Genoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA