Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Ecotoxicol Environ Saf ; 280: 116555, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38870735

RESUMO

In the center of the Nile Delta in Egypt, the Kitchener drain as the primary drainage discharges about 1.9 billion m3 per year of water, which comprises agricultural drainage (75 %), domestic water (23 %), and industrial water (2 %), to the Mediterranean Sea. Cadmium (Cd) stands out as a significant contaminant in this drain; therefore, this study aimed to assess the integration of biochar (0, 5, and 10 ton ha-1) and three PGPRs (PGPR-1, PGPR-2, and PGPR-3) to alleviate the negative impacts of Cd on sunflowers (Helianthus annuus L.) in saline-alkali soil. The treatment of biochar (10 ton ha-1) and PGPR-3 enhanced the soil respiration, dehydrogenase, nitrogenase, and phosphatase activities by 137 %, 129 %, 326 %, and 127 %, while it declined soil electrical conductivity and available Cd content by 31.7 % and 61.3 %. Also, it decreased Cd content in root, shoot, and seed by 55.3 %, 50.7 %, and 92.5 %, and biological concentration and translocation factors by 55 % and 5 %. It also declined the proline, lipid peroxidation, H2O2, and electrolyte leakage contents by 48 %, 94 %, 80 %, and 76 %, whereas increased the catalase, peroxidase, superoxide dismutase, and polyphenol oxidase activities by 80 %, 79 %, 61 %, and 116 %. Same treatment increased seed and oil yields increased by 76.1 % and 76.2 %. The unique aspect of this research is its investigation into the utilization of biochar in saline-alkali soil conditions, coupled with the combined application of biochar and PGPR to mitigate the adverse effects of Cd contamination on sunflower cultivation in saline-alkali soil.


Assuntos
Cádmio , Carvão Vegetal , Helianthus , Poluentes do Solo , Solo , Carvão Vegetal/química , Cádmio/análise , Cádmio/toxicidade , Helianthus/efeitos dos fármacos , Poluentes do Solo/análise , Solo/química , Egito , Álcalis/química , Biodegradação Ambiental , Raízes de Plantas , Microbiologia do Solo
2.
Plants (Basel) ; 13(5)2024 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-38475475

RESUMO

Soil salinity has a negative impact on the biochemical properties of soil and on plant growth, particularly in arid and semi-arid regions. Using arbuscular mycorrhizal fungi (Glomus versiform) and foliar spray from compost tea as alleviating treatments, this study aimed to investigate the effects of alleviating salt stress on the growth and development of maize and wheat grown on a saline-sodic soil during the period of 2022/2023. Six treatments were used in the completely randomized factorial design experiment. The treatments included Arbuscular mycorrhizal fungus (AMF0, AMF1) and varied concentrations of compost tea (CT0, CT50, and CT100). AMF colonization, the bacterial community and endosphere in the rhizosphere, respiration rate, growth parameters, and the productivity were all evaluated. The application of AMF and CT, either separately or in combination, effectively mitigated the detrimental effects caused by soil salinity. The combination of AMF and CT proved to be highly efficient in improving the infection rate of AMF, the bacterial community in the rhizosphere and endosphere, growth parameters, and grain yield of maize and wheat. Therefore, it can be proposed that the inoculation of mycorrhizal fungi with compost tea in saline soils is an important strategy for enhancing salt tolerance in maize and wheat plants through improving microbial activity, the infection rate of AMF, and overall maize and wheat productivity.

3.
Plants (Basel) ; 13(11)2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38891301

RESUMO

Sandy soil covers a significant portion of Egypt's total land area, representing a crucial agricultural resource for future food security and economic growth. This research adopts the hypothesis of maximizing the utilization of secondary products for soil improvement to reduce ecosystem pollution. The study focuses on assessing the impact of combining phosphogypsum and modified biochar as environmentally friendly soil amendments on loamy sand soil quality parameters such as soil organic carbon, cation exchange capacity, nutrient levels, and wheat yield. The treatments were T1: the recommended NPK fertilizer (control); T2: 2.5 kg phosphogypsum m-2 soil; T3: 2.5 kg rice straw biochar m-2 soil; T4: 2.5 kg cotton stalk biochar m-2 soil; T5: 2.5 kg rice-straw-modified biochar m-2 soil; T6: 2.5 kg cotton-stalk-modified biochar m-2 soil; and T7 to T10: mixed phosphogypsum and biochar treatments. The results revealed that the combined use of phosphogypsum and modified cotton stalk biochar (T10) significantly enhanced soil organic carbon (SOC) by 73.66% and 99.46% in both seasons, the soil available N both seasons by 130.12 and 161.45%, the available P by 89.49% and 102.02%, and the available K by 39.84 and 70.45% when compared to the control treatment. Additionally, this treatment led to the highest grain yield of wheat (2.72 and 2.92 Mg ha-1), along with a significant increase in straw yield (52.69% and 59.32%) compared to the control treatment. Overall, the findings suggest that the combined use of phosphogypsum and modified biochar, particularly cotton-stalk biochar, holds promise for improving loamy sand-soil quality and wheat productivity.

4.
Nanomaterials (Basel) ; 14(13)2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38998769

RESUMO

Arsenic (As)-contaminated soil reduces soil quality and leads to soil degradation, and traditional remediation strategies are expensive or typically produce hazardous by-products that have negative impacts on ecosystems. Therefore, this investigation attempts to assess the impact of As-tolerant bacterial isolates via a bacterial Rhizobim nepotum strain (B1), a bacterial Glutamicibacter halophytocola strain (B2), and MgO-NPs (N) and their combinations on the arsenic content, biological activity, and growth characteristics of maize plants cultivated in highly As-contaminated soil (300 mg As Kg-1). The results indicated that the spectroscopic characterization of MgO-NPs contained functional groups (e.g., Mg-O, OH, and Si-O-Si) and possessed a large surface area. Under As stress, its addition boosted the growth of plants, biomass, and chlorophyll levels while decreasing As uptake. Co-inoculation of R. nepotum and G. halophytocola had the highest significant values for chlorophyll content, soil organic matter (SOM), microbial biomass (MBC), dehydrogenase activity (DHA), and total number of bacteria compared to other treatments, which played an essential role in increasing maize growth. The addition of R. nepotum and G. halophytocola alone or in combination with MgO-NPs significantly decreased As uptake and increased the biological activity and growth characteristics of maize plants cultivated in highly arsenic-contaminated soil. Considering the results of this investigation, the combination of G. halophytocola with MgO-NPs can be used as a nanobioremediation strategy for remediating severely arsenic-contaminated soil and also improving the biological activity and growth parameters of maize plants.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA