Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Microsc Microanal ; 21(4): 946-52, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26169835

RESUMO

Here, we report reproducible and accurate measurement of crystallographic parameters using scanning transmission electron microscopy. This is made possible by removing drift and residual scan distortion. We demonstrate real-space lattice parameter measurements with <0.1% error for complex-layered chalcogenides Bi2Te3, Bi2Se3, and a Bi2Te2.7Se0.3 nanostructured alloy. Pairing the technique with atomic resolution spectroscopy, we connect local structure with chemistry and bonding. Combining these results with density functional theory, we show that the incorporation of Se into Bi2Te3 causes charge redistribution that anomalously increases the van der Waals gap between building blocks of the layered structure. The results show that atomic resolution imaging with electrons can accurately and robustly quantify crystallography at the nanoscale.

2.
Microsc Microanal ; 20(6): 1764-71, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25399553

RESUMO

Here, we report the development of an approach to map atomic resolution images into a convenient matrix representation. Through the combination of two-dimensional Gaussian fitting and the projective standard deviation, atom column locations are projected onto two noncollinear reference lattice vectors that are used to assign each a unique (i, j) matrix index. By doing so, straightforward atomic resolution image analysis becomes possible. Using practical examples, we demonstrate that the matrix representation greatly simplifies categorizing atom columns to different sublattices. This enables a myriad of direct analyses, such as mapping atom column properties and correlating long-range atom column pairs. MATLAB source code can be downloaded from https://github.com/subangstrom/aci.

3.
ACS Appl Mater Interfaces ; 5(18): 8955-60, 2013 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-24016419

RESUMO

Vertically aligned carbon nanofibers (VACNFs) were grown by plasma-enhanced chemical vapor deposition (PECVD) using Ni nanoparticle (NP) catalysts that were deposited by airbrushing onto Si, Al, Cu, and Ti substrates. Airbrushing is a simple method for depositing catalyst NPs over large areas that is compatible with roll-to-roll processing. The distribution and morphology of VACNFs are affected by the airbrushing parameters and the composition of the metal foil. Highly concentrated Ni NPs in heptane give more uniform distributions than pentane and hexanes, resulting in more uniform coverage of VACNFs. For VACNF growth on metal foils, Si micropowder was added as a precursor for Si-enriched coatings formed in situ on the VACNFs that impart mechanical rigidity. Interactions between the catalyst NPs and the metal substrates impart control over the VACNF morphology. Growth of carbon nanostructures on Cu is particularly noteworthy because the miscibility of Ni with Cu poses challenges for VACNF growth, and carbon nanostructures anchored to Cu substrates are desired as anode materials for Li-ion batteries and for thermal interface materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA