Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Cell ; 160(1-2): 324-38, 2015 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-25557080

RESUMO

Pancreatic cancer is one of the most lethal malignancies due to its late diagnosis and limited response to treatment. Tractable methods to identify and interrogate pathways involved in pancreatic tumorigenesis are urgently needed. We established organoid models from normal and neoplastic murine and human pancreas tissues. Pancreatic organoids can be rapidly generated from resected tumors and biopsies, survive cryopreservation, and exhibit ductal- and disease-stage-specific characteristics. Orthotopically transplanted neoplastic organoids recapitulate the full spectrum of tumor development by forming early-grade neoplasms that progress to locally invasive and metastatic carcinomas. Due to their ability to be genetically manipulated, organoids are a platform to probe genetic cooperation. Comprehensive transcriptional and proteomic analyses of murine pancreatic organoids revealed genes and pathways altered during disease progression. The confirmation of many of these protein changes in human tissues demonstrates that organoids are a facile model system to discover characteristics of this deadly malignancy.


Assuntos
Carcinoma Ductal Pancreático/patologia , Modelos Biológicos , Técnicas de Cultura de Órgãos , Organoides/patologia , Neoplasias Pancreáticas/patologia , Animais , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Nus , Pâncreas/metabolismo , Pâncreas/patologia
2.
Proc Natl Acad Sci U S A ; 118(21)2021 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-34021083

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is a lethal malignancy with limited treatment options. Although activating mutations of the KRAS GTPase are the predominant dependency present in >90% of PDAC patients, targeting KRAS mutants directly has been challenging in PDAC. Similarly, strategies targeting known KRAS downstream effectors have had limited clinical success due to feedback mechanisms, alternate pathways, and dose-limiting toxicities in normal tissues. Therefore, identifying additional functionally relevant KRAS interactions in PDAC may allow for a better understanding of feedback mechanisms and unveil potential therapeutic targets. Here, we used proximity labeling to identify protein interactors of active KRAS in PDAC cells. We expressed fusions of wild-type (WT) (BirA-KRAS4B), mutant (BirA-KRAS4BG12D), and nontransforming cytosolic double mutant (BirA-KRAS4BG12D/C185S) KRAS with the BirA biotin ligase in murine PDAC cells. Mass spectrometry analysis revealed that RSK1 selectively interacts with membrane-bound KRASG12D, and we demonstrate that this interaction requires NF1 and SPRED2. We find that membrane RSK1 mediates negative feedback on WT RAS signaling and impedes the proliferation of pancreatic cancer cells upon the ablation of mutant KRAS. Our findings link NF1 to the membrane-localized functions of RSK1 and highlight a role for WT RAS signaling in promoting adaptive resistance to mutant KRAS-specific inhibitors in PDAC.


Assuntos
Carcinoma Ductal Pancreático/genética , Neurofibromina 1/genética , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Quinases S6 Ribossômicas 90-kDa/genética , Animais , Carcinoma Ductal Pancreático/patologia , Linhagem Celular Tumoral , Proliferação de Células/genética , Humanos , Camundongos , Mutação , Pâncreas/patologia , Proteínas Repressoras/genética , Transdução de Sinais/genética
3.
Clin Cancer Res ; 27(7): 2023-2037, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33495315

RESUMO

PURPOSE: Pancreatic ductal adenocarcinoma (PDAC) is a deadly disease characterized by an extensive fibroinflammatory stroma, which includes abundant cancer-associated fibroblast (CAF) populations. PDAC CAFs are heterogeneous, but the nature of this heterogeneity is incompletely understood. The Hedgehog pathway functions in PDAC in a paracrine manner, with ligands secreted by cancer cells signaling to stromal cells in the microenvironment. Previous reports investigating the role of Hedgehog signaling in PDAC have been contradictory, with Hedgehog signaling alternately proposed to promote or restrict tumor growth. In light of the newly discovered CAF heterogeneity, we investigated how Hedgehog pathway inhibition reprograms the PDAC microenvironment. EXPERIMENTAL DESIGN: We used a combination of pharmacologic inhibition, gain- and loss-of-function genetic experiments, cytometry by time-of-flight, and single-cell RNA sequencing to study the roles of Hedgehog signaling in PDAC. RESULTS: We found that Hedgehog signaling is uniquely activated in fibroblasts and differentially elevated in myofibroblastic CAFs (myCAF) compared with inflammatory CAFs (iCAF). Sonic Hedgehog overexpression promotes tumor growth, while Hedgehog pathway inhibition with the smoothened antagonist, LDE225, impairs tumor growth. Furthermore, Hedgehog pathway inhibition reduces myCAF numbers and increases iCAF numbers, which correlates with a decrease in cytotoxic T cells and an expansion in regulatory T cells, consistent with increased immunosuppression. CONCLUSIONS: Hedgehog pathway inhibition alters fibroblast composition and immune infiltration in the pancreatic cancer microenvironment.


Assuntos
Fibroblastos Associados a Câncer/patologia , Carcinoma Ductal Pancreático/patologia , Proteínas Hedgehog/fisiologia , Neoplasias Pancreáticas/patologia , Animais , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/imunologia , Proteínas Hedgehog/antagonistas & inibidores , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/imunologia , Transdução de Sinais/fisiologia , Microambiente Tumoral
4.
J Exp Med ; 217(9)2020 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-32633781

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) has a dismal prognosis, and new therapies are needed. Altered metabolism is a cancer vulnerability, and several metabolic pathways have been shown to promote PDAC. However, the changes in cholesterol metabolism and their role during PDAC progression remain largely unknown. Here we used organoid and mouse models to determine the drivers of altered cholesterol metabolism in PDAC and the consequences of its disruption on tumor progression. We identified sterol O-acyltransferase 1 (SOAT1) as a key player in sustaining the mevalonate pathway by converting cholesterol to inert cholesterol esters, thereby preventing the negative feedback elicited by unesterified cholesterol. Genetic targeting of Soat1 impairs cell proliferation in vitro and tumor progression in vivo and reveals a mevalonate pathway dependency in p53 mutant PDAC cells that have undergone p53 loss of heterozygosity (LOH). In contrast, pancreatic organoids lacking p53 mutation and p53 LOH are insensitive to SOAT1 loss, indicating a potential therapeutic window for inhibiting SOAT1 in PDAC.


Assuntos
Ácido Mevalônico/metabolismo , Neoplasias Pancreáticas/enzimologia , Esterol O-Aciltransferase/metabolismo , Animais , Linhagem Celular Tumoral , Colesterol/metabolismo , Progressão da Doença , Humanos , Perda de Heterozigosidade/genética , Camundongos Endogâmicos C57BL , Modelos Biológicos , Neoplasias Pancreáticas/patologia , Esterol O-Aciltransferase/deficiência , Proteína Supressora de Tumor p53/metabolismo
5.
Cancer Discov ; 9(2): 282-301, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30366930

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is poorly responsive to therapies and histologically contains a paucity of neoplastic cells embedded within a dense desmoplastic stroma. Within the stroma, cancer-associated fibroblasts (CAF) secrete tropic factors and extracellular matrix components, and have been implicated in PDAC progression and chemotherapy resistance. We recently identified two distinct CAF subtypes characterized by either myofibroblastic or inflammatory phenotypes; however, the mechanisms underlying their diversity and their roles in PDAC remain unknown. Here, we use organoid and mouse models to identify TGFß and IL1 as tumor-secreted ligands that promote CAF heterogeneity. We show that IL1 induces LIF expression and downstream JAK/STAT activation to generate inflammatory CAFs and demonstrate that TGFß antagonizes this process by downregulating IL1R1 expression and promoting differentiation into myofibroblasts. Our results provide a mechanism through which distinct fibroblast niches are established in the PDAC microenvironment and illuminate strategies to selectively target CAFs that support tumor growth. SIGNIFICANCE: Understanding the mechanisms that determine CAF heterogeneity in PDAC is a prerequisite for the rational development of approaches that selectively target tumor-promoting CAFs. Here, we identify an IL1-induced signaling cascade that leads to JAK/STAT activation and promotes an inflammatory CAF state, suggesting multiple strategies to target these cells in vivo. See related commentary by Ling and Chiao, p. 173. This article is highlighted in the In This Issue feature, p. 151.


Assuntos
Fibroblastos Associados a Câncer/patologia , Carcinoma Ductal Pancreático/patologia , Interleucina-1/farmacologia , Janus Quinase 1/metabolismo , Neoplasias Pancreáticas/patologia , Fator de Transcrição STAT1/metabolismo , Fator de Crescimento Transformador beta/farmacologia , Animais , Apoptose , Fibroblastos Associados a Câncer/efeitos dos fármacos , Fibroblastos Associados a Câncer/metabolismo , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/metabolismo , Proliferação de Células , Feminino , Humanos , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Inflamação/patologia , Janus Quinase 1/genética , Camundongos , Camundongos Nus , Mutação , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/genética , Fator de Transcrição STAT1/genética , Transdução de Sinais/efeitos dos fármacos , Células Tumorais Cultivadas , Proteína Supressora de Tumor p53/genética , Ensaios Antitumorais Modelo de Xenoenxerto
6.
Clin Cancer Res ; 25(22): 6742-6755, 2019 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-31492749

RESUMO

PURPOSE: KRAS is mutated in the majority of pancreatic ductal adenocarcinoma. MAPK and PI3K-AKT are primary KRAS effector pathways, but combined MAPK and PI3K inhibition has not been demonstrated to be clinically effective to date. We explore the resistance mechanisms uniquely employed by malignant cells. EXPERIMENTAL DESIGN: We evaluated the expression and activation of receptor tyrosine kinases in response to combined MEK and AKT inhibition in KPC mice and pancreatic ductal organoids. In addition, we sought to determine the therapeutic efficacy of targeting resistance pathways induced by MEK and AKT inhibition in order to identify malignant-specific vulnerabilities. RESULTS: Combined MEK and AKT inhibition modestly extended the survival of KPC mice and increased Egfr and ErbB2 phosphorylation levels. Tumor organoids, but not their normal counterparts, exhibited elevated phosphorylation of ERBB2 and ERBB3 after MEK and AKT blockade. A pan-ERBB inhibitor synergized with MEK and AKT blockade in human PDA organoids, whereas this was not observed for the EGFR inhibitor erlotinib. Combined MEK and ERBB inhibitor treatment of human organoid orthotopic xenografts was sufficient to cause tumor regression in short-term intervention studies. CONCLUSIONS: Analyses of normal and tumor pancreatic organoids revealed the importance of ERBB activation during MEK and AKT blockade primarily in the malignant cultures. The lack of ERBB hyperactivation in normal organoids suggests a larger therapeutic index. In our models, pan-ERBB inhibition was synergistic with dual inhibition of MEK and AKT, and the combination of a pan-ERBB inhibitor with MEK antagonists showed the highest activity both in vitro and in vivo.


Assuntos
Antineoplásicos/farmacologia , Resistencia a Medicamentos Antineoplásicos , Organoides/efeitos dos fármacos , Organoides/patologia , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Transdução de Sinais , Animais , Linhagem Celular Tumoral , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Humanos , Camundongos , Camundongos Transgênicos , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/etiologia , Fosforilação , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-akt/metabolismo , Técnicas de Cultura de Tecidos
7.
Science ; 364(6446): 1156-1162, 2019 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-31221853

RESUMO

Glycosylation alterations are indicative of tissue inflammation and neoplasia, but whether these alterations contribute to disease pathogenesis is largely unknown. To study the role of glycan changes in pancreatic disease, we inducibly expressed human fucosyltransferase 3 and ß1,3-galactosyltransferase 5 in mice, reconstituting the glycan sialyl-Lewisa, also known as carbohydrate antigen 19-9 (CA19-9). Notably, CA19-9 expression in mice resulted in rapid and severe pancreatitis with hyperactivation of epidermal growth factor receptor (EGFR) signaling. Mechanistically, CA19-9 modification of the matricellular protein fibulin-3 increased its interaction with EGFR, and blockade of fibulin-3, EGFR ligands, or CA19-9 prevented EGFR hyperactivation in organoids. CA19-9-mediated pancreatitis was reversible and could be suppressed with CA19-9 antibodies. CA19-9 also cooperated with the KrasG12D oncogene to produce aggressive pancreatic cancer. These findings implicate CA19-9 in the etiology of pancreatitis and pancreatic cancer and nominate CA19-9 as a therapeutic target.


Assuntos
Antígeno CA-19-9/metabolismo , Carcinoma Ductal Pancreático/metabolismo , Receptores ErbB/metabolismo , Neoplasias Pancreáticas/metabolismo , Pancreatite/metabolismo , Doença Aguda , Animais , Antígeno CA-19-9/imunologia , Carcinogênese/metabolismo , Carcinoma Ductal Pancreático/patologia , Linhagem Celular Tumoral , Doença Crônica , Proteínas da Matriz Extracelular/metabolismo , Fucosiltransferases/genética , Fucosiltransferases/metabolismo , Galactosiltransferases/genética , Galactosiltransferases/metabolismo , Glicosilação , Humanos , Camundongos , Terapia de Alvo Molecular/métodos , Neoplasias Pancreáticas/patologia , Pancreatite/patologia
8.
J Exp Med ; 214(3): 579-596, 2017 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-28232471

RESUMO

Pancreatic stellate cells (PSCs) differentiate into cancer-associated fibroblasts (CAFs) that produce desmoplastic stroma, thereby modulating disease progression and therapeutic response in pancreatic ductal adenocarcinoma (PDA). However, it is unknown whether CAFs uniformly carry out these tasks or if subtypes of CAFs with distinct phenotypes in PDA exist. We identified a CAF subpopulation with elevated expression of α-smooth muscle actin (αSMA) located immediately adjacent to neoplastic cells in mouse and human PDA tissue. We recapitulated this finding in co-cultures of murine PSCs and PDA organoids, and demonstrated that organoid-activated CAFs produced desmoplastic stroma. The co-cultures showed cooperative interactions and revealed another distinct subpopulation of CAFs, located more distantly from neoplastic cells, which lacked elevated αSMA expression and instead secreted IL6 and additional inflammatory mediators. These findings were corroborated in mouse and human PDA tissue, providing direct evidence for CAF heterogeneity in PDA tumor biology with implications for disease etiology and therapeutic development.


Assuntos
Carcinoma Ductal Pancreático/patologia , Fibroblastos/fisiologia , Miofibroblastos/fisiologia , Neoplasias Pancreáticas/patologia , Actinas/análise , Animais , Carcinoma Ductal Pancreático/imunologia , Carcinoma Ductal Pancreático/metabolismo , Células Cultivadas , Citocinas/biossíntese , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Neoplasias Pancreáticas/imunologia , Neoplasias Pancreáticas/metabolismo , Fator de Transcrição STAT3/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA