Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Int J Parasitol ; 50(8): 577-594, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32592812

RESUMO

Rhipicephalus turanicus ticks are widely distributed across the Palearctic and Afrotropics. These two continental populations display differences in morphological characters that raise the question of a potential species boundary. However, the taxonomic status of these morphologically divergent lineages is uncertain because R. turanicus from Cyprus and Zambia have been shown to interbreed and produce fertile hybrids. We employ integrative taxonomy that considers data from mtDNA sequences (12S and 16S rDNA), geographic distribution, traditional (qualitative) morphology, as well as shape outlines of female spiracles and male adanal plates measured in a geometric morphometric framework (quantitative morphology) to resolve this taxonomic issue. Molecular lines of evidence (12S and 16S rDNA) support taxonomic separation between ticks sampled in the Afrotropics and the Palearctic. This is corroborated by qualitative and quantitative morphology. Within the Palearctic, two sub-lineages were recovered based on sequence data that loosely correspond to southern Europe and the Middle East/Asia. One new species, Rhipicephalus afranicus n. sp. is described from South Africa with a geographic distribution that extends into eastern Africa. This leaves R. turanicus sensu lato comprised of two lineages located in southern Europe and the Middle East/Asia. The type locality for R. turanicus is in Uzbekistan, thus the Middle East/Asia lineage is considered R. turanicus sensu stricto. Detailed descriptions are provided for R. afranicus n. sp. and R. turanicus sensu stricto together with high resolution images. Speciation is attributed to recent Sahara desert expansion that formed a natural barrier to dispersal approximately 5-7 million years ago. However, reproductive potential between these two species suggests that divergence time and mode of speciation were not sufficient for the development of reproductive isolation. We suggest speciation was complicated by divergence and population reintegration events driven by oscillating climatic conditions contributing to reticulate evolution and maintenance of compatibility between reproductive mechanisms. This study represents an integrative (iterative) approach to delimiting Rhipicephalus spp., and provides the first application of shape outlines for female spiracles and male adanal plates measured in a geometric morphometric framework, applied to testing species boundaries between ticks.


Assuntos
Filogenia , Rhipicephalus , Animais , Ásia , Europa (Continente) , Feminino , Masculino , Oriente Médio , Rhipicephalus/classificação , África do Sul
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA