Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 187(7): 1785-1800.e16, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38552614

RESUMO

To understand biological processes, it is necessary to reveal the molecular heterogeneity of cells by gaining access to the location and interaction of all biomolecules. Significant advances were achieved by super-resolution microscopy, but such methods are still far from reaching the multiplexing capacity of proteomics. Here, we introduce secondary label-based unlimited multiplexed DNA-PAINT (SUM-PAINT), a high-throughput imaging method that is capable of achieving virtually unlimited multiplexing at better than 15 nm resolution. Using SUM-PAINT, we generated 30-plex single-molecule resolved datasets in neurons and adapted omics-inspired analysis for data exploration. This allowed us to reveal the complexity of synaptic heterogeneity, leading to the discovery of a distinct synapse type. We not only provide a resource for researchers, but also an integrated acquisition and analysis workflow for comprehensive spatial proteomics at single-protein resolution.


Assuntos
Proteômica , Imagem Individual de Molécula , DNA , Microscopia de Fluorescência/métodos , Neurônios , Proteínas
2.
Nat Methods ; 21(9): 1755-1762, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39112798

RESUMO

DNA points accumulation for imaging in nanoscale topography (DNA-PAINT) is a super-resolution fluorescence microscopy technique that achieves single-molecule 'blinking' by transient DNA hybridization. Despite blinking kinetics being largely independent of fluorescent dye choice, the dye employed substantially affects measurement quality. Thus far, there has been no systematic overview of dye performance for DNA-PAINT. Here we defined four key parameters characterizing performance: brightness, signal-to-background ratio, DNA-PAINT docking site damage and off-target signal. We then analyzed 18 fluorescent dyes in three spectral regions and examined them both in DNA origami nanostructures, establishing a reference standard, and in a cellular environment, targeting the nuclear pore complex protein Nup96. Finally, having identified several well-performing dyes for each excitation wavelength, we conducted simultaneous three-color DNA-PAINT combined with Exchange-PAINT to image six protein targets in neurons at ~16 nm resolution in less than 2 h. We thus provide guidelines for DNA-PAINT dye selection and evaluation and an overview of performances of commonly used dyes.


Assuntos
DNA , Corantes Fluorescentes , Microscopia de Fluorescência , Corantes Fluorescentes/química , DNA/química , Microscopia de Fluorescência/métodos , Animais , Humanos , Hibridização de Ácido Nucleico , Complexo de Proteínas Formadoras de Poros Nucleares/química , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Neurônios/metabolismo , Nanoestruturas/química , Imagem Individual de Molécula/métodos
3.
PLoS Biol ; 21(12): e3002427, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38079451

RESUMO

Multiplexed cellular imaging typically relies on the sequential application of detection probes, as antibodies or DNA barcodes, which is complex and time-consuming. To address this, we developed here protein nanobarcodes, composed of combinations of epitopes recognized by specific sets of nanobodies. The nanobarcodes are read in a single imaging step, relying on nanobodies conjugated to distinct fluorophores, which enables a precise analysis of large numbers of protein combinations. Fluorescence images from nanobarcodes were used as input images for a deep neural network, which was able to identify proteins with high precision. We thus present an efficient and straightforward protein identification method, which is applicable to relatively complex biological assays. We demonstrate this by a multicell competition assay, in which we successfully used our nanobarcoded proteins together with neurexin and neuroligin isoforms, thereby testing the preferred binding combinations of multiple isoforms, in parallel.


Assuntos
Anticorpos de Domínio Único , DNA , Anticorpos , Imagem Óptica , Isoformas de Proteínas
4.
Eur J Immunol ; 54(3): e2350774, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38299456

RESUMO

The structure and dynamics of F-actin networks in the cortical area of B cells control the signal efficiency of B-cell antigen receptors (BCRs). Although antigen-induced signaling has been studied extensively, the role of cortical F-actin in antigen-independent tonic BCR signaling is less well understood. Because these signals are essential for the survival of B cells and are consequently exploited by several B-cell lymphomas, we assessed how the cortical F-actin structure influences tonic BCR signal transduction. We employed genetic variants of a primary cell-like B-cell line that can be rendered quiescent to show that cross-linking of actin filaments by α-actinin-4 (ACTN4), but not ACTN1, is required to preserve the dense architecture of F-actin in the cortical area of B cells. The reduced cortical F-actin density in the absence of ACTN4 resulted in increased lateral BCR diffusion. Surprisingly, this was associated with reduced tonic activation of BCR-proximal effector proteins, extracellular signal-regulated kinase, and pro-survival pathways. Accordingly, ACTN4-deficient B-cell lines and primary human B cells exhibit augmented apoptosis. Hence, our findings reveal that cortical F-actin architecture regulates antigen-independent tonic BCR survival signals in human B cells.


Assuntos
Actinas , Receptores de Antígenos de Linfócitos B , Humanos , Actinina/metabolismo , Actinas/metabolismo , Linfócitos B , Receptores de Antígenos de Linfócitos B/metabolismo , Transdução de Sinais
5.
J Physiol ; 2024 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-39367860

RESUMO

The synaptic vesicle cluster (SVC) is an essential component of chemical synapses, which provides neurotransmitter-loaded vesicles during synaptic activity, at the same time as also controlling the local concentrations of numerous exo- and endocytosis cofactors. In addition, the SVC hosts molecules that participate in other aspects of synaptic function, from cytoskeletal components to adhesion proteins, and affects the location and function of organelles such as mitochondria and the endoplasmic reticulum. We argue here that these features extend the functional involvement of the SVC in synapse formation, signalling and plasticity, as well as synapse stabilization and metabolism. We also propose that changes in the size of the SVC coalesce with changes in the postsynaptic compartment, supporting the interplay between pre- and postsynaptic dynamics. Thereby, the SVC could be seen as an 'all-in-one' regulator of synaptic structure and function, which should be investigated in more detail, to reveal molecular mechanisms that control synaptic function and heterogeneity.

6.
Proteins ; 91(12): 1571-1599, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37493353

RESUMO

We present an in-depth analysis of selected CASP15 targets, focusing on their biological and functional significance. The authors of the structures identify and discuss key protein features and evaluate how effectively these aspects were captured in the submitted predictions. While the overall ability to predict three-dimensional protein structures continues to impress, reproducing uncommon features not previously observed in experimental structures is still a challenge. Furthermore, instances with conformational flexibility and large multimeric complexes highlight the need for novel scoring strategies to better emphasize biologically relevant structural regions. Looking ahead, closer integration of computational and experimental techniques will play a key role in determining the next challenges to be unraveled in the field of structural molecular biology.


Assuntos
Biologia Computacional , Proteínas , Conformação Proteica , Modelos Moleculares , Biologia Computacional/métodos , Proteínas/química
7.
Int J Mol Sci ; 24(8)2023 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-37108454

RESUMO

The post-synaptic density protein 95 (PSD95) is a crucial scaffolding protein participating in the organization and regulation of synapses. PSD95 interacts with numerous molecules, including neurotransmitter receptors and ion channels. The functional dysregulation of PSD95 as well as its abundance and localization has been implicated with several neurological disorders, making it an attractive target for developing strategies able to monitor PSD95 accurately for diagnostics and therapeutics. This study characterizes a novel camelid single-domain antibody (nanobody) that binds strongly and with high specificity to rat, mouse, and human PSD95. This nanobody allows for more precise detection and quantification of PSD95 in various biological samples. We expect that the flexibility and unique performance of this thoroughly characterized affinity tool will help to further understand the role of PSD95 in normal and diseased neuronal synapses.


Assuntos
Neurônios , Sinapses , Ratos , Camundongos , Humanos , Animais , Proteína 4 Homóloga a Disks-Large/metabolismo , Sinapses/metabolismo , Neurônios/metabolismo , Densidade Pós-Sináptica/metabolismo , Canais Iônicos/metabolismo , Fatores de Transcrição/metabolismo
8.
Analyst ; 146(15): 4744-4747, 2021 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-34226908

RESUMO

We have developed a series of monovalent fluorophore-conjugated affinity probes based on the hapten 3-nitro-4-hydroxy-5-iodophenylacetyl (NIP), which is widely used as a model antigen to study B lymphocytes and the functional principles of B cell antigen receptors (BCRs). We successfully used them in flow-cytometry, confocal and super-resolution microscopy techniques.


Assuntos
Corantes Fluorescentes , Microscopia , Antígenos , Linfócitos B , Haptenos
9.
Phys Chem Chem Phys ; 23(46): 26349-26355, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34792046

RESUMO

Dendrimers are a class of branched, highly symmetric macromolecules that have been shown to be useful for a vast number of different applications. Potential uses as fluorescence sensors, in catalysis and perhaps most importantly in medical applications as drug delivery systems or cytotoxica have been proposed. Herein we report on an exotic behaviour of the nuclear spins in a dendritic macromolecule in the presence of different paramagnetic ions. We show that the stability of the long lived nuclear singlet state, is affected by the presence of Cu(II), whereas other ions did not have any influence at all. This effect could not be observed in the case of a simple tripeptide, in which the nuclear singlet stability was influenced by all investigated paramagnetic ions, a potentially useful effect in the development of Cu(II) selective probes. By adding a fluorescent marker to our molecule we could show that the nuclear singlet multimer (NUSIMER) is taken up by living cells. Furthermore we were able to show that nuclear singlet state NMR can be used to investigate the NUSIMER in the presence of living cells, showing that an application in in vivo NMR can be feasible.


Assuntos
Dendrímeros/química , Cobre/química , Substâncias Macromoleculares/química , Espectroscopia de Ressonância Magnética
10.
Angew Chem Int Ed Engl ; 59(40): 17732-17738, 2020 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-32511874

RESUMO

Single-walled carbon nanotubes (SWCNTs) are a 1D nanomaterial that shows fluorescence in the near-infrared (NIR, >800 nm). In the past, covalent chemistry was less explored to functionalize SWCNTs as it impairs NIR emission. However, certain sp3 defects (quantum defects) in the carbon lattice have emerged that preserve NIR fluorescence and even introduce a new, red-shifted emission peak. Here, we report on quantum defects, introduced using light-driven diazonium chemistry, that serve as anchor points for peptides and proteins. We show that maleimide anchors allow conjugation of cysteine-containing proteins such as a GFP-binding nanobody. In addition, an Fmoc-protected phenylalanine defect serves as a starting point for conjugation of visible fluorophores to create multicolor SWCNTs and in situ peptide synthesis directly on the nanotube. Therefore, these quantum defects are a versatile platform to tailor both the nanotube's photophysical properties as well as their surface chemistry.

11.
Eur J Immunol ; 48(3): 441-453, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29150831

RESUMO

Immunoglobulin E (IgE) antibodies are key mediators of allergic reactions. Due to their potentially harmful anaphylactic properties, their production is tightly regulated. The membrane-bound isoform of IgE (mIgE), which is an integral component of the B cell antigen receptor, has been shown to be critical for the regulation of IgE responses in mice. In primate species including humans, mIgE can be expressed in two isoforms that are produced by alternative splicing of the primary ε Ig heavy chain transcript, and differ in the absence or presence of an extracellular membrane-proximal domain (EMPD) consisting of 52 amino acids. However, the function of the EMPD remains unclear. Here, we demonstrate that the EMPD restricts surface expression of mIgE-containing BCRs in human and murine B cells. The EMPD does not interfere with BCR assembly but acts as an autonomous endoplasmic reticulum retention domain. Limited surface expression of EMPD-containing mIgE-BCRs caused impaired activation of intracellular signaling cascades and hence represents a regulatory mechanism that may control the production of potentially anaphylactic IgE antibodies in primate species.


Assuntos
Linfócitos B/imunologia , Imunoglobulina E/química , Receptores de Antígenos de Linfócitos B/química , Processamento Alternativo , Sequência de Aminoácidos , Animais , Apoptose/imunologia , Linfócitos B/citologia , Linhagem Celular Tumoral , Retículo Endoplasmático/imunologia , Evolução Molecular , Espaço Extracelular/imunologia , Humanos , Imunoglobulina E/genética , Imunoglobulina E/imunologia , Ativação Linfocitária , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Primatas/genética , Primatas/imunologia , Domínios Proteicos , Receptores de Antígenos de Linfócitos B/genética , Receptores de Antígenos de Linfócitos B/imunologia , Homologia de Sequência de Aminoácidos , Transdução de Sinais
12.
Angew Chem Int Ed Engl ; 58(33): 11469-11473, 2019 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-31112007

RESUMO

Fluorescent nanomaterials such as single-walled carbon nanotubes (SWCNTs) have many advantages in terms of their photophysics, but it is difficult to target them to specific locations in living systems. In contrast, the green fluorescent protein (GFP) has been genetically fused to proteins in many cells and organisms. Therefore, GFP can be seen not only as a fluorophore but as a universal target/handle. Here, we report the conjugation of GFP-binding nanobodies to DNA-wrapped SWCNTs. This approach combines the targeting capabilities of GFP-binding nanobodies and the nonbleaching near-infrared fluorescence (850-1700 nm) of SWCNTs. These conjugates allow us to track single Kinesin-5-GFP motor proteins in developing embryos of Drosophila melanogaster. Additionally, they are sensitive to the neurotransmitter dopamine and can be used for targeted sensing of dopamine in the nm regime.


Assuntos
Técnicas Biossensoriais , Raios Infravermelhos , Nanotubos de Carbono/química , Animais , DNA/química , Dopamina/química , Dopamina/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Proteínas de Fluorescência Verde , Proteínas Associadas aos Microtúbulos/metabolismo , Transporte Proteico
13.
Angew Chem Int Ed Engl ; 58(11): 3438-3443, 2019 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-30614604

RESUMO

Boron has been employed in materials science as a marker for imaging specific structures by electron energy loss spectroscopy (EELS) or secondary ion mass spectrometry (SIMS). It has a strong potential in biological analyses as well; however, the specific coupling of a sufficient number of boron atoms to a biological structure has proven challenging. Herein, we synthesize tags containing closo-1,2-dicarbadodecaborane, coupled to soluble peptides, which were integrated in specific proteins by click chemistry in mammalian cells and were also coupled to nanobodies for use in immunocytochemistry experiments. The tags were fully functional in biological samples, as demonstrated by nanoSIMS imaging of cell cultures. The boron signal revealed the protein of interest, while other SIMS channels were used for imaging different positive ions, such as the cellular metal ions. This allows, for the first time, the simultaneous imaging of such ions with a protein of interest and will enable new biological applications in the SIMS field.


Assuntos
Compostos de Boro/síntese química , Sondas Moleculares/síntese química , Nanopartículas/química , Peptídeos/química , Proteínas/análise , Compostos de Boro/metabolismo , Linhagem Celular , Química Click , Imagem Molecular/métodos , Sondas Moleculares/metabolismo , Proteínas/imunologia , Espectrometria de Massa de Íon Secundário , Espectroscopia de Perda de Energia de Elétrons
14.
Bioessays ; 37(4): 436-51, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25581819

RESUMO

The recent 2014 Nobel Prize in chemistry honored an era of discoveries and technical advancements in the field of super-resolution microscopy. However, the applications of diffraction-unlimited imaging in biology have a long road ahead and persistently engage scientists with new challenges. Some of the bottlenecks that restrain the dissemination of super-resolution techniques are tangible, and include the limited performance of affinity probes and the yet not capillary diffusion of imaging setups. Likewise, super-resolution microscopy has introduced new paradigms in the design of projects that require imaging with nanometer-resolution and in the interpretation of biological images. Besides structural or morphological characterization, super-resolution imaging is quickly expanding towards interaction mapping, multiple target detection and live imaging. Here we review the recent progress of biologists employing super-resolution imaging, some pitfalls, implications and new trends, with the purpose of animating the field and spurring future developments.


Assuntos
Microscopia/métodos
15.
Biochem J ; 473(20): 3385-3399, 2016 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-27729584

RESUMO

The synapse is densely packed with proteins involved in various highly regulated processes. Synaptic protein copy numbers and their stoichiometric distribution have a drastic influence on neuronal integrity and function. Therefore, the molecular analysis of synapses is a key element to understand their architecture and function. The overall structure of the synapse has been revealed with an exquisite amount of details by electron microscopy. However, the molecular composition and the localization of proteins are more easily addressed with fluorescence imaging, especially with the improved resolution achieved by super-resolution microscopy techniques. Notably, the fast improvement of imaging instruments has not been reflected in the optimization of biological sample preparation. During recent years, large efforts have been made to generate affinity probes smaller than conventional antibodies adapted for fluorescent super-resolution imaging. In this review, we briefly discuss the current views on synaptic organization and necessary key technologies to progress in the understanding of synaptic physiology. We also highlight the challenges faced by current fluorescent super-resolution methods, and we describe the prerequisites for an ideal study of synaptic organization.


Assuntos
Microscopia de Fluorescência/métodos , Sinapses/metabolismo , Sinapses/ultraestrutura , Animais , Corantes Fluorescentes , Humanos , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Microscopia Eletrônica , Modelos Biológicos
16.
Angew Chem Int Ed Engl ; 54(19): 5784-8, 2015 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-25783034

RESUMO

Secondary ion mass spectrometry (SIMS) is generally used in imaging the isotopic composition of various materials. It is becoming increasingly popular in biology, especially for investigations of cellular metabolism. However, individual proteins are difficult to identify in SIMS, which limits the ability of this technology to study individual compartments or protein complexes. We present a method for specific protein isotopic and fluorescence labeling (SPILL), based on a novel click reaction with isotopic probes. Using this method, we added (19) F-enriched labels to different proteins, and visualized them by NanoSIMS and fluorescence microscopy. The (19) F signal allowed the precise visualization of the protein of interest, with minimal background, and enabled correlative studies of protein distribution and cellular metabolism or composition. SPILL can be applied to biological systems suitable for click chemistry, which include most cell-culture systems, as well as small model organisms.


Assuntos
Nanotecnologia , Proteínas/genética , Espectrometria de Massa de Íon Secundário , Animais , Linhagem Celular , Química Click , Cricetinae , Corantes Fluorescentes/química , Radioisótopos de Flúor , Microscopia de Fluorescência , Estrutura Molecular , Proteínas/química , Proteínas/metabolismo
17.
Trends Cell Biol ; 34(8): 671-684, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38184400

RESUMO

Recently, biologists have gained access to several far-field fluorescence nanoscopy (FN) technologies that allow the observation of cellular components with ~20 nm resolution. FN is revolutionizing cell biology by enabling the visualization of previously inaccessible subcellular details. While technological advances in microscopy are critical to the field, optimal sample preparation and labeling are equally important and often overlooked in FN experiments. In this review, we provide an overview of the methodological and experimental factors that must be considered when performing FN. We present key concepts related to the selection of affinity-based labels, dyes, multiplexing, live cell imaging approaches, and quantitative microscopy. Consideration of these factors greatly enhances the effectiveness of FN, making it an exquisite tool for numerous biological applications.


Assuntos
Nanotecnologia , Humanos , Animais , Nanotecnologia/métodos , Microscopia de Fluorescência/métodos , Biologia Celular , Imagem Óptica/métodos , Corantes Fluorescentes/química
18.
Nat Commun ; 15(1): 6068, 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39025931

RESUMO

Neurexins are key adhesion proteins that coordinate extracellular and intracellular synaptic components. Nonetheless, the low abundance of these multidomain proteins has complicated any localization and structure-function studies. Here we combine an ALFA tag (AT)/nanobody (NbALFA) tool with classic genetics, cell biology and electrophysiology to examine the distribution and function of the Drosophila Nrx-1 in vivo. We generate full-length and ΔPDZ ALFA-tagged Nrx-1 variants and find that the PDZ binding motif is key to Nrx-1 surface expression. A PDZ binding motif provided in trans, via genetically encoded cytosolic NbALFA-PDZ chimera, fully restores the synaptic localization and function of NrxΔPDZ-AT. Using cytosolic NbALFA-mScarlet intrabody, we achieve compartment-specific detection of endogenous Nrx-1, track live Nrx-1 transport along the motor neuron axons, and demonstrate that Nrx-1 co-migrates with Rab2-positive vesicles. Our findings illustrate the versatility of the ALFA system and pave the way towards dissecting functional domains of complex proteins in vivo.


Assuntos
Proteínas de Drosophila , Anticorpos de Domínio Único , Animais , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Anticorpos de Domínio Único/metabolismo , Drosophila melanogaster/metabolismo , Neurônios Motores/metabolismo , Domínios PDZ , Axônios/metabolismo , Moléculas de Adesão de Célula Nervosa/metabolismo , Moléculas de Adesão de Célula Nervosa/genética , Transporte Proteico , Moléculas de Adesão Celular Neuronais
19.
Nat Commun ; 15(1): 8771, 2024 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-39384781

RESUMO

Fluorescence microscopy has long been a transformative technique in biological sciences. Nevertheless, most implementations are limited to a few targets, which have been revealed using primary antibodies and fluorescently conjugated secondary antibodies. Super-resolution techniques such as Exchange-PAINT and, more recently, SUM-PAINT have increased multiplexing capabilities, but they require specialized equipment, software, and knowledge. To enable multiplexing for any imaging technique in any laboratory, we developed NanoPlex, a streamlined method based on conventional antibodies revealed by engineered secondary nanobodies that allow the selective removal of fluorescence signals. We develop three complementary signal removal strategies: OptoPlex (light-induced), EnzyPlex (enzymatic), and ChemiPlex (chemical). We showcase NanoPlex reaching 21 targets for 3D confocal analyses and 5-8 targets for dSTORM and STED super-resolution imaging. NanoPlex has the potential to revolutionize multi-target fluorescent imaging methods, potentially redefining the multiplexing capabilities of antibody-based assays.


Assuntos
Microscopia de Fluorescência , Anticorpos de Domínio Único , Microscopia de Fluorescência/métodos , Anticorpos de Domínio Único/química , Anticorpos de Domínio Único/imunologia , Humanos , Microscopia Confocal/métodos , Animais , Corantes Fluorescentes/química
20.
bioRxiv ; 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38826303

RESUMO

2',3'-cyclic nucleotide 3'-phosphodiesterase (CNPase) is an abundant constituent of central nervous system non-compact myelin, frequently used as a marker antigen for myelinating cells. The catalytic activity of CNPase, the 3'-hydrolysis of 2',3'-cyclic nucleotides, is well characterised in vitro, but the in vivo function of CNPase remains unclear. CNPase interacts with the actin cytoskeleton to counteract the developmental closure of cytoplasmic channels that travel through compact myelin; its enzymatic activity may be involved in adenosine metabolism and RNA degradation. We developed a set of high-affinity nanobodies recognizing the phosphodiesterase domain of CNPase, and the crystal structures of each complex show that the five nanobodies have distinct epitopes. One of the nanobodies bound deep into the CNPase active site and acted as an inhibitor. Moreover, the nanobodies were characterised in imaging applications and as intrabodies, expressed in mammalian cells, such as primary oligodendrocytes. Fluorescently labelled nanobodies functioned in imaging of teased nerve fibers and whole brain tissue sections, as well as super-resolution microscopy. These anti-CNPase nanobodies provide new tools for structural and functional biology of myelination, including high-resolution imaging of nerve tissue.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA