Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Plant J ; 109(6): 1559-1574, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34953105

RESUMO

KARRIKIN INSENSITIVE2 (KAI2) is an α/ß-hydrolase required for plant responses to karrikins, which are abiotic butenolides that can influence seed germination and seedling growth. Although represented by four angiosperm species, loss-of-function kai2 mutants are phenotypically inconsistent and incompletely characterised, resulting in uncertainties about the core functions of KAI2 in plant development. Here we characterised the developmental functions of KAI2 in the grass Brachypodium distachyon using molecular, physiological and biochemical approaches. Bdkai2 mutants exhibit increased internode elongation and reduced leaf chlorophyll levels, but only a modest increase in water loss from detached leaves. Bdkai2 shows increased numbers of lateral roots and reduced root hair growth, and fails to support normal root colonisation by arbuscular-mycorrhizal (AM) fungi. The karrikins KAR1 and KAR2 , and the strigolactone (SL) analogue rac-GR24, each elicit overlapping but distinct changes to the shoot transcriptome via BdKAI2. Finally, we show that BdKAI2 exhibits a clear ligand preference for desmethyl butenolides and weak responses to methyl-substituted SL analogues such as GR24. Our findings suggest that KAI2 has multiple roles in shoot development, root system development and transcriptional regulation in grasses. Although KAI2-dependent AM symbiosis is likely conserved within monocots, the magnitude of the effect of KAI2 on water relations may vary across angiosperms.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Brachypodium , Proteínas de Arabidopsis/fisiologia , Brachypodium/genética , Furanos , Lactonas/farmacologia , Reguladores de Crescimento de Plantas/farmacologia , Folhas de Planta/genética , Piranos , Simbiose
2.
New Phytol ; 239(5): 1692-1706, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37357353

RESUMO

Climate change and extreme climatic events, such as marine heatwaves (MHWs), are threatening seagrass ecosystems. Metabolomics can be used to gain insight into early stress responses in seagrasses and help to develop targeted management and conservation measures. We used metabolomics to understand the temporal and mechanistic response of leaf metabolism in seagrasses to climate change. Two species, temperate Posidonia australis and tropical Halodule uninervis, were exposed to a combination of future warming, simulated MHW with subsequent recovery period, and light deprivation in a mesocosm experiment. The leaf metabolome of P. australis was altered under MHW exposure at ambient light while H. uninervis was unaffected. Light deprivation impacted both seagrasses, with combined effects of heat and low light causing greater alterations in leaf metabolism. There was no MHW recovery in P. australis. Conversely, the heat-resistant leaf metabolome of H. uninervis showed recovery of sugars and intermediates of the tricarboxylic acid cycle under combined heat and low light exposure, suggesting adaptive strategies to long-term light deprivation. Overall, this research highlights how metabolomics can be used to study the metabolic pathways of seagrasses, identifies early indicators of environmental stress and analyses the effects of environmental factors on plant metabolism and health.


Assuntos
Alismatales , Água do Mar , Ecossistema , Alismatales/metabolismo , Metabolômica , Oceanos e Mares
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA