Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Hum Mol Genet ; 28(1): 1-15, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30215702

RESUMO

Most pathogenic missense mutations cause specific molecular phenotypes through protein destabilization. However, how protein destabilization is manifested as a given molecular phenotype is not well understood. We develop here a structural and energetic approach to describe mutational effects on specific traits such as function, regulation, stability, subcellular targeting or aggregation propensity. This approach is tested using large-scale experimental and structural perturbation analyses in over thirty mutations in three different proteins (cancer-associated NQO1, transthyretin related with amyloidosis and AGT linked to primary hyperoxaluria type I) and comprising five very common pathogenic mechanisms (loss-of-function and gain-of-toxic function aggregation, enzyme inactivation, protein mistargeting and accelerated degradation). Our results revealed that the magnitude of destabilizing effects and, particularly, their propagation through the structure to promote disease-associated conformational states largely determine the severity and molecular mechanisms of disease-associated missense mutations. Modulation of the structural perturbation at a mutated site is also shown to cause switches between different molecular phenotypes. When very common disease-associated missense mutations were investigated, we also found that they were not among the most deleterious possible missense mutations at those sites, and required additional contributions from codon bias and effects of CpG sites to explain their high frequency in patients. Our work sheds light on the molecular basis of pathogenic mechanisms and genotype-phenotype relationships, with implications for discriminating between pathogenic and neutral changes within human genome variability from whole genome sequencing studies.


Assuntos
Mutação de Sentido Incorreto/fisiologia , Proteínas/genética , Relação Estrutura-Atividade , Animais , Biologia Computacional/métodos , Biologia Computacional/estatística & dados numéricos , Doença , Humanos , Mutação , Mutação de Sentido Incorreto/genética , Patologia , Fenótipo , Conformação Proteica , Proteínas/fisiologia
2.
Hum Mol Genet ; 27(24): 4204-4217, 2018 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-30184081

RESUMO

Guanylate Cyclase-Activating Protein 1 (GCAP1) regulates the enzymatic activity of the photoreceptor guanylate cyclases (GC), leading to inhibition or activation of the cyclic guanosine monophosphate (cGMP) synthesis depending on its Ca2+- or Mg2+-loaded state. By genetically screening a family of patients diagnosed with cone-rod dystrophy, we identified a novel missense mutation with autosomal dominant inheritance pattern (c.332A>T; p.(Glu111Val); E111V from now on) in the GUCA1A gene coding for GCAP1. We performed a thorough biochemical and biophysical investigation of wild type (WT) and E111V human GCAP1 by heterologous expression and purification of the recombinant proteins. The E111V substitution disrupts the coordination of the Ca2+ ion in the high-affinity site (EF-hand 3, EF3), thus significantly decreasing the ability of GCAP1 to sense Ca2+ (∼80-fold higher Kdapp compared to WT). Both WT and E111V GCAP1 form dimers independently on the presence of cations, but the E111V Mg2+-bound form is prone to severe aggregation over time. Molecular dynamics simulations suggest a significantly increased flexibility of both the EF3 and EF4 cation binding loops for the Ca2+-bound form of E111V GCAP1, in line with the decreased affinity for Ca2+. In contrast, a more rigid backbone conformation is observed in the Mg2+-bound state compared to the WT, which results in higher thermal stability. Functional assays confirm that E111V GCAP1 interacts with the target GC with a similar apparent affinity (EC50); however, the mutant shifts the GC inhibition out of the physiological [Ca2+] (IC50E111V ∼10 µM), thereby leading to the aberrant constitutive synthesis of cGMP under conditions of dark-adapted photoreceptors.


Assuntos
Distrofias de Cones e Bastonetes/genética , Proteínas Ativadoras de Guanilato Ciclase/genética , Células Fotorreceptoras Retinianas Cones/química , Degeneração Retiniana/genética , Fenômenos Biofísicos , Cálcio/metabolismo , Distrofias de Cones e Bastonetes/patologia , GMP Cíclico/biossíntese , GMP Cíclico/química , Regulação da Expressão Gênica/genética , Proteínas Ativadoras de Guanilato Ciclase/química , Humanos , Magnésio/metabolismo , Simulação de Dinâmica Molecular , Mutação de Sentido Incorreto/genética , Linhagem , Agregação Patológica de Proteínas/genética , Ligação Proteica , Células Fotorreceptoras Retinianas Cones/metabolismo , Células Fotorreceptoras Retinianas Cones/patologia , Degeneração Retiniana/patologia
3.
IUBMB Life ; 71(7): 917-927, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30806021

RESUMO

Oxalate decarboxylase (OxDC) from Bacillus subtilis is a Mn-dependent hexameric enzyme that converts oxalate to carbon dioxide and formate. OxDC has greatly attracted the interest of the scientific community, mainly due to its biotechnological and medical applications in particular for the treatment of hyperoxaluria, a group of pathologic conditions caused by oxalate accumulation. The enzyme has an acidic optimum pH, but most of its applications involve processes occurring at neutral pH. Nevertheless, a detailed biochemical characterization of the enzyme at neutral pH is lacking. Here, we compared the structural-functional properties at acidic and neutral pH of wild-type OxDC and of a mutant form, called OxDC-DSSN, bearing four amino acid substitutions in the lid (Ser161-to-Asp, Glu162-to-Ser, Asn163-toSer, and Ser164-to-Asn) that improve the oxalate oxidase activity and almost abolish the decarboxylase activity. We found that both enzymatic forms do not undergo major structural changes as a function of pH, although OxDC-DSSN displays an increased tendency to aggregation, which is counteracted by the presence of an active-site ligand. Notably, OxDC and OxDC-DSSN at pH 7.2 retain 7 and 15% activity, respectively, which is sufficient to degrade oxalate in a cellular model of primary hyperoxaluria type I, a rare inherited disease caused by excessive endogenous oxalate production. The significance of the data in the light of the possible use of OxDC as biological drug is discussed. © 2019 IUBMB Life, 1-11, 2019.


Assuntos
Bacillus subtilis/enzimologia , Proteínas de Bactérias/metabolismo , Carboxiliases/metabolismo , Oxalatos/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Sítios de Ligação , Carboxiliases/química , Carboxiliases/genética , Domínio Catalítico , Concentração de Íons de Hidrogênio , Cinética , Modelos Moleculares , Oxirredução , Conformação Proteica
4.
Br J Cancer ; 119(8): 994-1008, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30318520

RESUMO

BACKGROUND: The TP53 tumor suppressor gene is the most frequently altered gene in tumors and mutant p53 gain-of-function isoforms actively promote cancer malignancy. METHODS: A panel of wild-type and mutant p53 cancer cell lines of different tissues, including pancreas, breast, skin, and lung were used, as well as chronic lymphocytic leukemia (CLL) patients with different TP53 gene status. The effects of mutant p53 were evaluated by confocal microscopy, reactive oxygen species production assay, immunoblotting, and quantitative reverse transcription polymerase chain reaction after cellular transfection. RESULTS: We demonstrate that oncogenic mutant p53 isoforms are able to inhibit SESN1 expression and consequently the amount of SESN1/AMPK complex, resulting in the downregulation of the AMPK/PGC-1α/UCP2 axis and mitochondrial O2-· production. We also show a correlation between the decrease of reduced thiols with a poorer clinical outcome of CLL patients bearing mutant TP53 gene. The restoration of the mitochondrial uncoupling protein 2 (UCP2) expression, as well as the addition of the radical scavenger N-acetyl-L-cysteine, reversed the oncogenic effects of mutant p53 as cellular hyper-proliferation, antiapoptotic effect, and resistance to drugs. CONCLUSIONS: The inhibition of the SESN1/AMPK/PGC-1α/UCP2 axis contributes to the pro-oxidant and oncogenic effects of mutant p53, suggesting pro-oxidant drugs as a therapeutic approach for cancer patients bearing mutant TP53 gene.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Acetilcisteína/farmacologia , Sequestradores de Radicais Livres/farmacologia , Proteínas de Choque Térmico/biossíntese , Neoplasias/genética , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Desacopladora 2/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Linhagem Celular Tumoral , Feminino , Proteínas de Choque Térmico/metabolismo , Humanos , Células MCF-7 , Masculino , Pessoa de Meia-Idade , Mitocôndrias/metabolismo , Neoplasias/patologia , Oxigênio/metabolismo , Espécies Reativas de Oxigênio/metabolismo
5.
J Inherit Metab Dis ; 41(2): 263-275, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29110180

RESUMO

Primary hyperoxaluria type I (PH1) is a rare disease caused by the deficit of liver alanine-glyoxylate aminotransferase (AGT). AGT prevents oxalate formation by converting peroxisomal glyoxylate to glycine. When the enzyme is deficient, progressive calcium oxalate stones deposit first in the urinary tract and then at the systemic level. Pyridoxal 5'-phosphate (PLP), the AGT coenzyme, exerts a chaperone role by promoting dimerization, as demonstrated by studies at protein and cellular level. Thus, variants showing a destabilized dimeric structure should, in principle, be responsive to vitamin B6, a precursor of PLP. However, models to predict the extent of responsiveness of each variant are missing. We examined the effects of pathogenic interfacial mutations by combining bioinformatic predictions with molecular and cellular studies on selected variants (R36H, G42E, I56N, G63R, and G216R), in both their holo- (i.e., with bound PLP) and apo- (i.e., without bound PLP) form. We found that all variants displayed structural alterations mainly related to the apoform and consisting of an altered tertiary and quaternary structure. G216R also shows a strongly reduced catalytic efficiency. Moreover, all but G216R respond to vitamin B6, as shown by their increased specific activity and expression level in a cellular disease model. A global analysis of data unraveled a possible inverse correlation between the degree of destabilization/misfolding induced by a mutation and the extent of B6 responsiveness. These results provide a first explanation of factors influencing B6 response in PH1, a model possibly valuable for other rare diseases caused by protein deficits.


Assuntos
Hiperoxalúria Primária/tratamento farmacológico , Hiperoxalúria Primária/genética , Mutação , Transaminases/genética , Vitamina B 6/farmacologia , Animais , Células CHO , Cricetulus , Predisposição Genética para Doença , Humanos , Hiperoxalúria Primária/diagnóstico , Hiperoxalúria Primária/enzimologia , Fenótipo , Dobramento de Proteína , Multimerização Proteica , Relação Estrutura-Atividade , Transaminases/química , Transaminases/deficiência , Vitamina B 6/metabolismo
6.
Handb Exp Pharmacol ; 245: 313-343, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29071511

RESUMO

Protein misfolding is becoming one of the main mechanisms underlying inherited enzymatic deficits. This review is focused on primary hyperoxalurias, a group of disorders of glyoxylate detoxification associated with massive calcium oxalate deposition mainly in the kidneys. The most common and severe form, primary hyperoxaluria Type I, is due to the deficit of liver peroxisomal alanine/glyoxylate aminotransferase (AGT). Various studies performed in the last decade clearly evidence that many pathogenic missense mutations prevent the AGT correct folding, leading to various downstream effects including aggregation, increased degradation or mistargeting to mitochondria. Primary hyperoxaluria Type II and primary hyperoxaluria Type III are due to the deficit of glyoxylate reductase/hydroxypyruvate reductase (GRHPR) and 4-hydroxy-2-oxoglutarate aldolase (HOGA1), respectively. Although the molecular features of pathogenic variants of GRHPR and HOGA1 have not been investigated in detail, the data available suggest that some of them display folding defects. Thus, primary hyperoxalurias can be ranked among protein misfolding disorders, because in most cases the enzymatic deficit is due to the inability of each enzyme to reach its native and functional conformation. It follows that molecules able to improve the folding yield of the enzymes involved in each disease form could represent new therapeutic strategies.


Assuntos
Hiperoxalúria Primária/etiologia , Deficiências na Proteostase/etiologia , Animais , Humanos , Hidroxipiruvato Redutase/genética , Chaperonas Moleculares/uso terapêutico , Oxo-Ácido-Liases/genética , Dobramento de Proteína , Transaminases/química , Transaminases/genética
7.
Biochim Biophys Acta ; 1864(9): 1195-1205, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27179589

RESUMO

In humans, glyoxylate is an intermediary product of metabolism, whose concentration is finely balanced. Mutations in peroxisomal alanine:glyoxylate aminotransferase (hAGT1) cause primary hyperoxaluria type 1 (PH1), which results in glyoxylate accumulation that is converted to toxic oxalate. In contrast, glyoxylate is used by the nematode Caenorhabditis elegans through a glyoxylate cycle to by-pass the decarboxylation steps of the tricarboxylic acid cycle and thus contributing to energy production and gluconeogenesis from stored lipids. To investigate the differences in glyoxylate metabolism between humans and C. elegans and to determine whether the nematode might be a suitable model for PH1, we have characterized here the predicted nematode ortholog of hAGT1 (AGXT-1) and compared its molecular properties with those of the human enzyme. Both enzymes form active PLP-dependent dimers with high specificity towards alanine and glyoxylate, and display similar three-dimensional structures. Interestingly, AGXT-1 shows 5-fold higher activity towards the alanine/glyoxylate pair than hAGT1. Thermal and chemical stability of AGXT-1 is lower than that of hAGT1, suggesting temperature-adaptation of the nematode enzyme linked to the lower optimal growth temperature of C. elegans. Remarkably, in vivo experiments demonstrate the mitochondrial localization of AGXT-1 in contrast to the peroxisomal compartmentalization of hAGT1. Our results support the view that the different glyoxylate metabolism in the nematode is associated with the divergent molecular properties and subcellular localization of the alanine:glyoxylate aminotransferase activity.


Assuntos
Proteínas de Caenorhabditis elegans/química , Caenorhabditis elegans/metabolismo , Glioxilatos/metabolismo , Mitocôndrias/metabolismo , Peroxissomos/metabolismo , Transaminases/química , Adaptação Biológica , Alanina/química , Alanina/metabolismo , Sequência de Aminoácidos , Animais , Evolução Biológica , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Clonagem Molecular , Dimerização , Metabolismo Energético , Estabilidade Enzimática , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Glioxilatos/química , Humanos , Mutação , Estrutura Secundária de Proteína , Fosfato de Piridoxal/química , Fosfato de Piridoxal/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Especificidade da Espécie , Homologia Estrutural de Proteína , Temperatura , Transaminases/genética , Transaminases/metabolismo
8.
J Cell Biochem ; 118(10): 3237-3248, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28262977

RESUMO

Tumor dormancy is a poorly understood stage in cancer progression characterized by mitotic cycle arrest in G0/G1 phase and low metabolism. The cells survive in a quiescent state and wait for appropriate environmental conditions to begin proliferation again giving rise to metastasis. Despite their key role in cancer development and metastasis, the knowledge about their biology and origin is still very limited due to the poorness of established in vitro models that faithfully recapitulated tumor dormancy. Using at least three cycles of 1% O2 hypoxia and reoxygenation, we establish and characterize the hypoxia-resistant human breast cancer cell line chMDA-MB-231 that can stably survive under 1% O2 condition by entering into dormant state characterized by arrest in G0/G1 phase and low metabolism. This dormant state is reversible since once replaced in normoxia the cells recover the proliferation rate in 2 weeks. We show that chronic hypoxia induces autophagy that may be the survival mechanism of chMDA-MB-231 cells. Furthermore, the data in this work demonstrate that cycling hypoxic/reoxygenation stress selects MDA-MB-231 population that presents the cancer stem-like phenotype characterized by CD24- /CD44+ /ESA+ expression and spheroid forming capacity. We believe that our study presents a promising approach to select dormant breast cancer cells with stem-like phenotype using the hypoxia/reoxygenation regimen that may represent an area with profound implications for therapeutic developments in oncology. J. Cell. Biochem. 118: 3237-3248, 2017. © 2017 Wiley Periodicals, Inc.


Assuntos
Neoplasias da Mama/metabolismo , Fase G1 , Células-Tronco Neoplásicas/metabolismo , Fase de Repouso do Ciclo Celular , Neoplasias da Mama/patologia , Hipóxia Celular , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Células MCF-7 , Metástase Neoplásica , Células-Tronco Neoplásicas/patologia
9.
Hum Mol Genet ; 24(19): 5500-11, 2015 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-26199318

RESUMO

Vitamin B6 in the form of pyridoxine (PN) is one of the most widespread pharmacological therapies for inherited diseases involving pyridoxal phosphate (PLP)-dependent enzymes, including primary hyperoxaluria type I (PH1). PH1 is caused by a deficiency of liver-peroxisomal alanine: glyoxylate aminotransferase (AGT), which allows glyoxylate oxidation to oxalate leading to the deposition of insoluble calcium oxalate in the kidney. Only a minority of PH1 patients, mostly bearing the F152I and G170R mutations, respond to PN, the only pharmacological treatment currently available. Moreover, excessive doses of PN reduce the specific activity of AGT in a PH1 cellular model. Nevertheless, the possible effect(s) of other B6 vitamers has not been investigated previously. Here, we compared the ability of PN in rescuing the effects of the F152I and G170R mutations with that of pyridoxamine (PM) and PL. We found that supplementation with PN raises the intracellular concentration of PN phosphate (PNP), which competes with PLP for apoenzyme binding leading to the formation of an inactive AGT-PNP complex. In contrast, PNP does not accumulate in the cell upon PM or PL supplementation, but higher levels of PLP and PM phosphate (PMP), the two active forms of the AGT coenzyme, are found. This leads to an increased ability of PM and PL to rescue the effects of the F152I and G170R mutations compared with PN. A similar effect was also observed for other folding-defective AGT variants. Thus, PM and PL should be investigated as matter of importance as therapeutics for PH1 patients bearing folding mutations.


Assuntos
Hiperoxalúria Primária/genética , Piridoxal/farmacologia , Piridoxamina/farmacologia , Piridoxina/farmacologia , Transaminases/química , Complexo Vitamínico B/farmacologia , Animais , Células CHO , Cricetinae , Cricetulus , Humanos , Hiperoxalúria Primária/tratamento farmacológico , Mutação/efeitos dos fármacos , Dobramento de Proteína/efeitos dos fármacos , Transaminases/genética
10.
Nanomedicine ; 13(3): 897-907, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-27993722

RESUMO

Alanine:glyoxylate aminotransferase (AGT) is a liver peroxisomal enzyme whose deficit causes the rare disorder Primary Hyperoxaluria Type I (PH1). We now describe the conjugation of poly(ethylene glycol)-co-poly(L-glutamic acid) (PEG-PGA) block-co-polymer to AGT via the formation of disulfide bonds between the polymer and solvent-exposed cysteine residues of the enzyme. PEG-PGA conjugation did not affect AGT structural/functional properties and allowed the enzyme to be internalized in a cellular model of PH1 and to restore glyoxylate-detoxification. The insertion of the C387S/K390S amino acid substitutions, known to favor interaction with the peroxisomal import machinery, reduced conjugation efficiency, but endowed conjugates with the ability to reach the peroxisomal compartment. These results, along with the finding that conjugates are hemocompatible, stable in plasma, and non-immunogenic, hold promise for the development of polypeptide-based AGT conjugates as a therapeutic option for PH1 patients and represent the base for applications to other diseases related to deficits in peroxisomal proteins.


Assuntos
Sistemas de Liberação de Medicamentos , Hiperoxalúria Primária/tratamento farmacológico , Peroxissomos/metabolismo , Polietilenoglicóis/química , Ácido Poliglutâmico/análogos & derivados , Transaminases/administração & dosagem , Transaminases/química , Substituição de Aminoácidos , Animais , Células CHO , Cricetulus , Terapia Enzimática , Glioxilatos/metabolismo , Humanos , Hiperoxalúria Primária/enzimologia , Hiperoxalúria Primária/metabolismo , Modelos Moleculares , Peroxissomos/efeitos dos fármacos , Transaminases/genética , Transaminases/farmacocinética
11.
Biochim Biophys Acta ; 1854(9): 1212-9, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25620715

RESUMO

Liver peroxisomal alanine:glyoxylate aminotransferase (AGT) (EC 2.6.1.44) catalyses the conversion of l-alanine and glyoxylate to pyruvate and glycine, a reaction that allows glyoxylate detoxification. Inherited mutations on the AGXT gene encoding AGT lead to Primary Hyperoxaluria Type I (PH1), a rare disorder characterized by the deposition of calcium oxalate crystals primarily in the urinary tract. Here we describe the results obtained on the biochemical features of AGT as well as on the molecular and cellular effects of polymorphic and pathogenic mutations. A complex scenario on the molecular pathogenesis of PH1 emerges in which the co-inheritance of polymorphic changes and the condition of homozygosis or compound heterozygosis are two important factors that determine the enzymatic phenotype of PH1 patients. All the reported data represent relevant steps toward the understanding of genotype/phenotype correlations, the prediction of the response of the patients to the available therapies, and the development of new therapeutic approaches. This article is part of a Special Issue entitled: Cofactor-dependent proteins: evolution, chemical diversity and bio-applications.


Assuntos
Alanina/metabolismo , Hiperoxalúria Primária/genética , Fígado/enzimologia , Mutação , Peroxissomos/enzimologia , Transaminases/química , Transaminases/genética , Humanos , Transaminases/metabolismo
12.
Biochim Biophys Acta ; 1854(10 Pt A): 1280-9, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26149463

RESUMO

Liver peroxisomal alanine:glyoxylate aminotransferase (AGT), a pyridoxal 5'-phosphate (PLP) enzyme, exists as two polymorphic forms, the major (AGT-Ma) and the minor (AGT-Mi) haplotype. Deficit of AGT causes Primary Hyperoxaluria Type 1 (PH1), an autosomal recessive rare disease. Although ~one-third of the 79 disease-causing missense mutations segregates on AGT-Mi, only few of them are well characterized. Here for the first time the molecular and cellular defects of G47R-Mi are reported. When expressed in Escherichia coli, the recombinant purified G47R-Mi variant exhibits only a 2.5-fold reduction of its kcat, and its apo form displays a remarkably decreased PLP binding affinity, increased dimer-monomer equilibrium dissociation constant value, susceptibility to thermal denaturation and to N-terminal region proteolytic cleavage, and aggregation propensity. When stably expressed in a mammalian cell line, we found ~95% of the intact form of the variant in the insoluble fraction, and proteolyzed (within the N-terminal region) and aggregated forms both in the soluble and insoluble fractions. Moreover, the intact and nicked forms have a peroxisomal and a mitochondrial localization, respectively. Unlike what already seen for G41R-Mi, exposure of G47R-Mi expressing cells to pyridoxine (PN) remarkably increases the expression level and the specific activity in a dose-dependent manner, reroutes all the protein to peroxisomes, and rescues its functionality. Although the mechanism of the different effect of PN on the variants G47R-Mi and G41R-Mi remains elusive, the chaperoning activity of PN may be of value in the therapy of patients bearing the G47R mutation.


Assuntos
Apoenzimas/química , Holoenzimas/química , Mutação , Piridoxina/farmacologia , Transaminases/química , Alanina/química , Alanina/metabolismo , Alelos , Animais , Apoenzimas/genética , Apoenzimas/metabolismo , Células CHO , Cricetulus , Relação Dose-Resposta a Droga , Ensaios Enzimáticos , Expressão Gênica , Glioxilatos/química , Glioxilatos/metabolismo , Holoenzimas/genética , Holoenzimas/metabolismo , Humanos , Cinética , Mutagênese Sítio-Dirigida , Conformação Proteica/efeitos dos fármacos , Dobramento de Proteína/efeitos dos fármacos , Fosfato de Piridoxal/química , Fosfato de Piridoxal/metabolismo , Piridoxina/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Solubilidade , Transaminases/genética , Transaminases/metabolismo
13.
Hum Mol Genet ; 23(22): 5998-6007, 2014 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-24990153

RESUMO

Primary Hyperoxaluria type I (PH1) is a rare disease due to the deficit of peroxisomal alanine:glyoxylate aminotransferase (AGT), a homodimeric pyridoxal-5'-phosphate (PLP) enzyme present in humans as major (Ma) and minor (Mi) allele. PH1-causing mutations are mostly missense identified in both homozygous and compound heterozygous patients. Until now, the pathogenesis of PH1 has been only studied by approaches mimicking homozygous patients, whereas the molecular aspects of the genotype-enzymatic-clinical phenotype relationship in compound heterozygous patients are completely unknown. Here, for the first time, we elucidate the enzymatic phenotype linked to the S81L mutation on AGT-Ma, relative to a PLP-binding residue, and how it changes when the most common mutation G170R on AGT-Mi, known to cause AGT mistargeting without affecting the enzyme functionality, is present in the second allele. By using a bicistronic eukaryotic expression vector, we demonstrate that (i) S81L-Ma is mainly in its apo-form and has a significant peroxisomal localization and (ii) S81L and G170R monomers interact giving rise to the G170R-Mi/S81L-Ma holo-form, which is imported into peroxisomes and exhibits an enhanced functionality with respect to the parental enzymes. These data, integrated with the biochemical features of the heterodimer and the homodimeric counterparts in their purified recombinant form, (i) highlight the molecular basis of the pathogenicity of S81L-Ma and (ii) provide evidence for a positive interallelic complementation between the S81L and G170R monomers. Our study represents a valid approach to investigate the molecular pathogenesis of PH1 in compound heterozygous patients.


Assuntos
Hiperoxalúria Primária/enzimologia , Hiperoxalúria Primária/genética , Mutação de Sentido Incorreto , Transaminases/genética , Adolescente , Adulto , Alelos , Substituição de Aminoácidos , Feminino , Heterozigoto , Homozigoto , Humanos , Masculino , Transporte Proteico , Transaminases/metabolismo
14.
Hum Mol Genet ; 22(8): 1615-24, 2013 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-23321058

RESUMO

Dopa or aromatic amino acid decarboxylase (DDC, AADC) is a pyridoxal 5'-phosphate-dependent enzyme that catalyses the production of the neurotransmitters dopamine and serotonin. Among the so far identified mutations associated with AADC deficiency, an inherited rare neurometabolic disease, the S250F mutation is the most frequent one. Here, for the first time, the molecular basis of the deficit of the S250F variant was investigated both in vitro and in cellular systems. Ser250 is not essential for the catalytic activity of the enzyme. However, its mutation to Phe causes a ~7-fold reduction of catalytic efficiency and a conformational change in the proximity of the mutated residue that is transmitted to the active site. In cellular extracts of E. coli and mammalian cells, both the specific activity and the protein level of the variant decrease with respect to the wild-type. The results with mammalian cells indicate that the mutation does not affect intracellular mRNA levels, and are consistent with a model where S250F undergoes a degradation process via the proteasome, possibly through an ubiquitination process occurring faster than in the wild-type. Overall, biochemical and cell biology experiments show that loss of function of S250F occurs by two distinct but not exclusive mechanisms affecting activity and folding. Importantly, 4-phenylbutirric acid (4-PBA) or, to a major extent, pyridoxine increase the expression level and, in a dose-dependent manner, the decarboxylase specific activity of mutant-expressing cells. This strongly suggests that 4-PBA and/or pyridoxine administration may be of important value in therapy of patients bearing the S250F mutation.


Assuntos
Erros Inatos do Metabolismo dos Aminoácidos/genética , Dopa Descarboxilase/genética , Piridoxina/administração & dosagem , RNA Mensageiro/biossíntese , Erros Inatos do Metabolismo dos Aminoácidos/enzimologia , Erros Inatos do Metabolismo dos Aminoácidos/patologia , Animais , Descarboxilases de Aminoácido-L-Aromático/deficiência , Descarboxilases de Aminoácido-L-Aromático/genética , Células CHO , Catálise , Cricetinae , Dopa Descarboxilase/química , Dopa Descarboxilase/metabolismo , Dopamina/biossíntese , Dopamina/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Mutação , Polimorfismo Genético , Conformação Proteica , Proteólise , RNA Mensageiro/genética , Serotonina/biossíntese , Serotonina/metabolismo
15.
Biochim Biophys Acta ; 1832(12): 2277-88, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24055001

RESUMO

Primary Hyperoxaluria Type I (PH1) is a severe rare disorder of metabolism due to inherited mutations on liver peroxisomal alanine:glyoxylate aminotransferase (AGT), a pyridoxal 5'-phosphate (PLP)-dependent enzyme whose deficiency causes the deposition of calcium oxalate crystals in the kidneys and urinary tract. PH1 is an extremely heterogeneous disease and there are more than 150 disease-causing mutations currently known, most of which are missense mutations. Moreover, the molecular mechanisms by which missense mutations lead to AGT deficiency span from structural, functional to subcellular localization defects. Gly161 is a highly conserved residue whose mutation to Arg, Cys or Ser is associated with PH1. Here we investigated the molecular bases of the AGT deficit caused by Gly161 mutations with expression studies in a mammalian cellular system paired with biochemical analyses on the purified recombinant proteins. Our results show that the mutations of Gly161 (i) strongly reduce the expression levels and the intracellular half-life of AGT, and (ii) make the protein in the apo-form prone to an electrostatically-driven aggregation in the cell cytosol. The coenzyme PLP, by shifting the equilibrium from the apo- to the holo-form, is able to reduce the aggregation propensity of the variants, thus partly decreasing the effect of the mutations. Altogether, these results shed light on the mechanistic details underlying the pathogenicity of Gly161 variants, thus expanding our knowledge of the enzymatic phenotypes leading to AGT deficiency.


Assuntos
Citosol/metabolismo , Hiperoxalúria Primária/patologia , Mutação/genética , Multimerização Proteica , Proteólise , Transaminases/genética , Transaminases/metabolismo , Animais , Apoenzimas , Western Blotting , Células CHO , Células Cultivadas , Cromatografia em Gel , Cricetulus , Meia-Vida , Humanos , Hiperoxalúria Primária/enzimologia , Hiperoxalúria Primária/genética , Técnicas Imunoenzimáticas , Mutagênese Sítio-Dirigida , Conformação Proteica , Dobramento de Proteína , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transaminases/química
16.
Proteins ; 81(8): 1457-65, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23589421

RESUMO

The substitution of Ser187, a residue located far from the active site of human liver peroxisomal alanine:glyoxylate aminotransferase (AGT), by Phe gives rise to a variant associated with primary hyperoxaluria type I. Unexpectedly, previous studies revealed that the recombinant form of S187F exhibits a remarkable loss of catalytic activity, an increased pyridoxal 5'-phosphate (PLP) binding affinity and a different coenzyme binding mode compared with normal AGT. To shed light on the structural elements responsible for these defects, we solved the crystal structure of the variant to a resolution of 2.9 Å. Although the overall conformation of the variant is similar to that of normal AGT, we noticed: (i) a displacement of the PLP-binding Lys209 and Val185, located on the re and si side of PLP, respectively, and (ii) slight conformational changes of other active site residues, in particular Trp108, the base stacking residue with the pyridine cofactor moiety. This active site perturbation results in a mispositioning of the AGT-pyridoxamine 5'-phosphate (PMP) complex and of the external aldimine, as predicted by molecular modeling studies. Taken together, both predicted and observed movements caused by the S187F mutation are consistent with the following functional properties of the variant: (i) a 300- to 500-fold decrease in both the rate constant of L-alanine half-transamination and the kcat of the overall transamination, (ii) a different PMP binding mode and affinity, and (iii) a different microenvironment of the external aldimine. Proposals for the treatment of patients bearing S187F mutation are discussed on the basis of these results.


Assuntos
Hiperoxalúria Primária/enzimologia , Fígado/enzimologia , Mutação Puntual , Transaminases/química , Transaminases/genética , Alanina/metabolismo , Domínio Catalítico , Cristalografia por Raios X , Humanos , Hiperoxalúria Primária/genética , Hiperoxalúria Primária/metabolismo , Fígado/metabolismo , Modelos Moleculares , Conformação Proteica , Fosfato de Piridoxal/metabolismo , Transaminases/metabolismo
17.
Proc Natl Acad Sci U S A ; 107(7): 2896-901, 2010 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-20133649

RESUMO

G41 is an interfacial residue located within the alpha-helix 34-42 of alanine:glyoxylate aminotransferase (AGT). Its mutations on the major (AGT-Ma) or the minor (AGT-Mi) allele give rise to the variants G41R-Ma, G41R-Mi, and G41V-Ma causing hyperoxaluria type 1. Impairment of dimerization in these variants has been suggested to be responsible for immunoreactivity deficiency, intraperoxisomal aggregation, and sensitivity to proteasomal degradation. However, no experimental evidence supports this view. Here we report that G41 mutations, besides increasing the dimer-monomer equilibrium dissociation constant, affect the protein conformation and stability, and perturb its active site. As compared to AGT-Ma or AGT-Mi, G41 variants display different near-UV CD and intrinsic emission fluorescence spectra, larger exposure of hydrophobic surfaces, sensitivity to Met53-Tyr54 peptide bond cleavage by proteinase K, decreased thermostability, reduced coenzyme binding affinity, and catalytic efficiency. Additionally, unlike AGT-Ma and AGT-Mi, G41 variants under physiological conditions form insoluble inactive high-order aggregates (approximately 5,000 nm) through intermolecular electrostatic interactions. A comparative molecular dynamics study of the putative structures of AGT-Mi and G41R-Mi predicts that G41 --> R mutation causes a partial unwinding of the 34-42 alpha-helix and a displacement of the first 44 N-terminal residues including the active site loop 24-32. These simulations help us to envisage the possible structural basis of AGT dysfunction associated with G41 mutations. The detailed insight into how G41 mutations act on the structure-function of AGT may contribute to achieve the ultimate goal of correcting the effects of these mutations.


Assuntos
Glicina/genética , Hiperoxalúria Primária/enzimologia , Modelos Moleculares , Transaminases/genética , Alanina/metabolismo , Cromatografia em Gel , Dimerização , Humanos , Cinética , Espectrometria de Massas , Mutagênese Sítio-Dirigida , Mutação/genética , Nefelometria e Turbidimetria , Transaminases/metabolismo
18.
Mol Genet Metab ; 105(1): 132-40, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22018727

RESUMO

Primary Hyperoxaluria Type I (PH1) is a disorder of glyoxylate metabolism caused by mutations in the human AGXT gene encoding liver peroxisomal alanine:glyoxylate aminotransferase (AGT), a pyridoxal 5'-phosphate (PLP) dependent enzyme. Previous investigations highlighted that, although PH1 is characterized by a significant variability in terms of enzymatic phenotype, the majority of the pathogenic variants are believed to share both structural and functional defects, as mainly revealed by data on AGT activity and expression level in crude cellular extracts. However, the knowledge of the defects of the AGT variants at a protein level is still poor. We therefore performed a side-by-side comparison between normal AGT and nine purified recombinant pathogenic variants in terms of catalytic activity, coenzyme binding mode and affinity, spectroscopic features, oligomerization, and thermal stability of both the holo- and apo-forms. Notably, we chose four variants in which the mutated residues are located in the large domain of AGT either within the active site and interacting with the coenzyme or in its proximity, and five variants in which the mutated residues are distant from the active site either in the large or in the small domain. Overall, this integrated analysis of enzymatic activity, spectroscopic and stability information is used to (i) reassess previous data obtained with crude cellular extracts, (ii) establish which form(s) (i.e. holoenzyme and/or apoenzyme) and region(s) (i.e. active site microenvironment, large and/or small domain) of the protein are affected by each mutation, and (iii) suggest the possible therapeutic approach for patients bearing the examined mutations.


Assuntos
Apoproteínas/genética , Hiperoxalúria Primária/enzimologia , Hiperoxalúria Primária/genética , Proteínas Mutantes/genética , Mutação/genética , Transaminases/genética , Animais , Apoproteínas/química , Dicroísmo Circular , Biologia Computacional , Estabilidade Enzimática , Escherichia coli , Humanos , Cinética , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Ligação Proteica , Fosfato de Piridoxal/metabolismo , Coelhos , Temperatura , Transaminases/química , Transaminases/isolamento & purificação
19.
J Pers Med ; 11(4)2021 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-33917320

RESUMO

Peroxisomal matrix proteins are transported into peroxisomes in a fully-folded state, but whether multimeric proteins are imported as monomers or oligomers is still disputed. Here, we used alanine:glyoxylate aminotransferase (AGT), a homodimeric pyridoxal 5'-phosphate (PLP)-dependent enzyme, whose deficit causes primary hyperoxaluria type I (PH1), as a model protein and compared the intracellular behavior and peroxisomal import of native dimeric and artificial monomeric forms. Monomerization strongly reduces AGT intracellular stability and increases its aggregation/degradation propensity. In addition, monomers are partly retained in the cytosol. To assess possible differences in import kinetics, we engineered AGT to allow binding of a membrane-permeable dye and followed its intracellular trafficking without interfering with its biochemical properties. By fluorescence recovery after photobleaching, we measured the import rate in live cells. Dimeric and monomeric AGT displayed a similar import rate, suggesting that the oligomeric state per se does not influence import kinetics. However, when dimerization is compromised, monomers are prone to misfolding events that can prevent peroxisomal import, a finding crucial to predicting the consequences of PH1-causing mutations that destabilize the dimer. Treatment with pyridoxine of cells expressing monomeric AGT promotes dimerization and folding, thus, demonstrating the chaperone role of PLP. Our data support a model in which dimerization represents a potential key checkpoint in the cytosol at the crossroad between misfolding and correct targeting, a possible general mechanism for other oligomeric peroxisomal proteins.

20.
Urolithiasis ; 47(1): 67-78, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30430197

RESUMO

Primary hyperoxalurias (PHs) are rare inherited disorders of liver glyoxylate metabolism, characterized by the abnormal production of endogenous oxalate, a metabolic end-product that is eliminated by urine. The main symptoms are related to the precipitation of calcium oxalate crystals in the urinary tract with progressive renal damage and, in the most severe form named Primary Hyperoxaluria Type I (PH1), to systemic oxalosis. The therapies currently available for PH are either poorly effective, because they address the symptoms and not the causes of the disease, or highly invasive. In the last years, advances in our understanding of the molecular bases of PH have paved the way for the development of new therapeutic strategies. They include (i) substrate-reduction therapies based on small-molecule inhibitors or the RNA interference technology, (ii) gene therapy, (iii) enzyme administration approaches, (iv) colonization with oxalate-degrading intestinal microorganisms, and, in PH1, (v) design of pharmacological chaperones. This paper reviews the basic principles of these new therapeutic strategies and what is currently known about their application to PH.


Assuntos
Oxalato de Cálcio/metabolismo , Hiperoxalúria Primária/terapia , Nefrolitíase/terapia , Eliminação Renal , Transaminases/genética , Oxirredutases do Álcool/antagonistas & inibidores , Oxirredutases do Álcool/metabolismo , Microbioma Gastrointestinal/fisiologia , Terapia Genética/métodos , Glioxilatos/metabolismo , Humanos , Hiperoxalúria Primária/genética , Hiperoxalúria Primária/metabolismo , Rim/metabolismo , Transplante de Rim , Fígado/metabolismo , Transplante de Fígado , Nefrolitíase/genética , Nefrolitíase/metabolismo , Oxalobacter formigenes/metabolismo , Piridoxina/uso terapêutico , Interferência de RNA , Transaminases/metabolismo , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA