Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 626(8000): 752-758, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38326617

RESUMO

The relation between crystal symmetries, electron correlations and electronic structure steers the formation of a large array of unconventional phases of matter, including magneto-electric loop currents and chiral magnetism1-6. The detection of such hidden orders is an important goal in condensed-matter physics. However, until now, non-standard forms of magnetism with chiral electronic ordering have been difficult to detect experimentally7. Here we develop a theory for symmetry-broken chiral ground states and propose a methodology based on circularly polarized, spin-selective, angular-resolved photoelectron spectroscopy to study them. We use the archetypal quantum material Sr2RuO4 and reveal spectroscopic signatures that, despite being subtle, can be reconciled with the formation of spin-orbital chiral currents at the surface of the material8-10. As we shed light on these chiral regimes, our findings pave the way for a deeper understanding of ordering phenomena and unconventional magnetism.

2.
Nano Lett ; 24(25): 7601-7608, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38870328

RESUMO

Metallic ferromagnetic transition metal dichalcogenides have emerged as important building blocks for scalable magnetic and memory applications. Downscaling such systems to the ultrathin limit is critical to integrate them into technology. Here, we achieved layer-by-layer control over the transition metal dichalcogenide Cr1.6Te2 by using pulsed laser deposition, and we uncovered the minimum critical thickness above which room-temperature magnetic order is maintained. The electronic and magnetic structures are explored experimentally and theoretically, and it is shown that the films exhibit strong in-plane magnetic anisotropy as a consequence of large spin-orbit effects. Our study elucidates both magnetic and electronic properties of Cr1.6Te2 and corroborates the importance of intercalation to tune the magnetic properties of nanoscale materials' architectures.

3.
Nano Lett ; 23(17): 8035-8042, 2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37638737

RESUMO

Engineering surfaces and interfaces of materials promises great potential in the field of heterostructures and quantum matter designers, with the opportunity to drive new many-body phases that are absent in the bulk compounds. Here, we focus on the magnetic Weyl kagome system Co3Sn2S2 and show how for the terminations of different samples the Weyl points connect differently, still preserving the bulk-boundary correspondence. Scanning tunneling microscopy has suggested such a scenario indirectly, and here, we probe the Fermiology of Co3Sn2S2 directly, by linking it to its real space surface distribution. By combining micro-ARPES and first-principles calculations, we measure the energy-momentum spectra and the Fermi surfaces of Co3Sn2S2 for different surface terminations and show the existence of topological features depending on the top-layer electronic environment. Our work helps to define a route for controlling bulk-derived topological properties by means of surface electrostatic potentials, offering a methodology for using Weyl kagome metals in responsive magnetic spintronics.

4.
Nano Lett ; 22(14): 5990-5996, 2022 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-35787096

RESUMO

Phase transitions are key in determining and controlling the quantum properties of correlated materials. Here, by using the combination of material synthesis and photoelectron spectroscopy, we demonstrate a genuine Mott transition undressed of any symmetry breaking side effects in the thin films of V2O3. In particular and in contrast with the bulk V2O3, we unveil the purely electronic dynamics approaching the metal-insulator transition, disentangled from the structural transformation that is prevented by the residual substrate-induced strain. On approaching the transition, the spectral signal evolves slowly over a wide temperature range, the Fermi wave-vector does not change, and the critical temperature is lower than the one reported for the bulk. Our findings are fundamental in demonstrating the universal benchmarks of a genuine nonsymmetry breaking Mott transition, extendable to a large array of correlated quantum systems, and hold promise of exploiting the metal-insulator transition by implementing V2O3 thin films in devices.

5.
Nano Lett ; 20(9): 6444-6451, 2020 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-32794711

RESUMO

Oxygen vacancies are known to play a crucial role in tuning the physical properties and technological applications of titanium dioxide TiO2. Over the last decades, defects in substoichiometric TiO2 have been commonly associated with the formation of TinO2n-x Magnéli phases, which are extended planar defects originating from crystallographic shear planes. By combining advanced transmission electron microscopy techniques, electron energy-loss spectroscopy and atomistic simulations, we reach new understanding of the oxygen vacancy induced structural modulations in anatase, ruling out the earlier shear-plane model. Structural modulations are instead shown to be due to the formation of oxygen vacancy superstructures that extend periodically inside the films, preserving the crystalline order of anatase. Elucidating the structure of oxygen defects in anatase is a crucial step for improving the functionalities of such material system and to engineer devices with targeted properties.

6.
Nanoscale ; 16(25): 12237-12247, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38847457

RESUMO

In the field of hydrogen production, MoS2 demonstrates good catalytic properties for the hydrogen evolution reaction (HER) which improve when doped with metal cations. However, while the role of sulfur atoms as active sites in the HER is largely reported, the role of metal atoms (i.e. molybdenum or the dopant cations) has yet to be studied in depth. To understand the role of the metal dopant, we study MoS2 thin films doped with Co and Mn ions. We identify the contribution of the electronic bands of the Mn and Co dopants to the integral valence band of the material using in situ resonant photoemission measurements. We demonstrate that Mn and Co dopants act differently: Mn doping favors the shift of the S-Mo hybridized band towards the Fermi level, while in the case of Co doping it is the less hybridized Co band that shifts closer to the Fermi level. Doping with Mn increases the effectiveness of S as the active site, thus improving the HER, while doping with Co introduces the metallic site of Co as the active site, which is less effective in improving HER properties. We therefore clarify the role of the dopant cation in the electronic structure determining the active site for hydrogen adsorption/desorption. Our results pave the way for the design of efficient materials for hydrogen production via the doping route, which can be extended to different catalytic reactions in the field of energy applications.

7.
Materials (Basel) ; 16(6)2023 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-36984129

RESUMO

Focused Ion Beam patterning has become a widely applied technique in the last few decades in the micro- and nanofabrication of quantum materials, representing an important advantage in terms of resolution and versatility. However, ion irradiation can trigger undesired effects on the target material, most of them related to the damage created by the impinging ions that can severely affect the crystallinity of the sample, compromising the application of Focused Ion Beam to the fabrication of micro- and nanosized systems. We focus here on the case of Bi2Se3, a topological material whose unique properties rely on its crystallinity. In order to study the effects of ion irradiation on the structure of Bi2Se3, we irradiated with Ga+ ions the full width of Hall-bar devices made from thin films of this material, with the purpose of inducing changes in the electrical resistance and characterizing the damage created during the process. The results indicate that a relatively high ion dose is necessary to introduce significant changes in the conduction. This ion dose creates medium-range lateral damage in the structure, manifested through the formation of an amorphous region that can extend laterally up to few hundreds of nanometers beyond the irradiated area. This amorphous material is no longer expected to behave as intrinsic Bi2Se3, indicating a spatial limitation for the devices fabricated through this technique.

8.
Sci Rep ; 13(1): 3882, 2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36890286

RESUMO

We report on the growth and characterization of epitaxial YBa[Formula: see text]Cu[Formula: see text]O[Formula: see text] (YBCO) complex oxide thin films and related heterostructures exclusively by Pulsed Laser Deposition (PLD) and using first harmonic Nd:Y[Formula: see text]Al[Formula: see text]O[Formula: see text] (Nd:YAG) pulsed laser source ([Formula: see text] = 1064  nm). High-quality epitaxial YBCO thin film heterostructures display superconducting properties with transition temperature [Formula: see text] 80 K. Compared with the excimer lasers, when using Nd:YAG lasers, the optimal growth conditions are achieved at a large target-to-substrate distance d. These results clearly demonstrate the potential use of the first harmonic Nd:YAG laser source as an alternative to the excimer lasers for the PLD thin film community. Its compactness as well as the absence of any safety issues related to poisonous gas represent a major breakthrough in the deposition of complex multi-element compounds in form of thin films.

9.
Nanomaterials (Basel) ; 12(10)2022 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-35630928

RESUMO

Transport properties of electron-doped cuprate Sr1-xLaxCuO2 thin films have been investigated as a function of doping. In particular, optimal- and over-doped samples were obtained by tuning the Sr:La stoichiometric ratio. Optimal-doped samples show a non-Fermi liquid behavior characterized by linear dependence of the resistivity from room temperature down to intermediate temperature (about 150-170 K). However, by approaching temperatures in the superconducting transition, a Fermi-liquid behavior-characterized by a T2-scaling law-was observed. Once established, the transition from a linear-T to a quadratic-T2 behavior was successfully traced back in over-doped samples, even occurring at lower temperatures. In addition, the over-doped samples show a crossover to a linear-T to a logarithmic dependence at high temperatures compatible with anti-ferromagnetic spin fluctuations dominating the normal state properties of electron-doped cuprates.

10.
Nanomaterials (Basel) ; 12(7)2022 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-35407212

RESUMO

We grew Sr1-xLaxCuO2 thin films and SrCuO2/Sr0.9La0.1CuO2/SrCuO2 trilayers by reflection high-energy diffraction-calibrated layer-by-layer molecular beam epitaxy, to study their electrical transport properties as a function of the doping and thickness of the central Sr0.9La0.1CuO2 layer. For the trilayer samples, as already observed in underdoped SLCO films, the electrical resistivity versus temperature curves as a function of the central layer thickness show, for thicknesses thinner than 20 unit cells, sudden upturns in the low temperature range with the possibility for identifying, in the normal state, the T* and a T** temperatures, respectively, separating high-temperature linear behavior and low-temperature quadratic dependence. By plotting the T* and T** values as a function of TConset for both the thin films and the trilayers, the data fall on the same curves. This result suggests that, for the investigated trilayers, the superconducting critical temperature is the important parameter able to describe the normal state properties and that, in the limit of very thin central layers, such properties are mainly influenced by the modification of the energy band structure and not by interface-related disorder.

11.
ACS Omega ; 7(17): 14571-14578, 2022 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-35557663

RESUMO

The structural, electronic, and magnetic properties of Sr-hole-doped epitaxial La1-x Sr x MnO3 (0.15 ≤ x ≤ 0.45) thin films deposited using the molecular beam epitaxy technique on 4° vicinal STO (001) substrates are probed by the combination of X-ray diffraction and various synchrotron-based spectroscopy techniques. The structural characterizations evidence a significant shift in the LSMO (002) peak to the higher diffraction angles owing to the increase in Sr doping concentrations in thin films. The nature of the LSMO Mn mixed-valence state was estimated from X-ray photoemission spectroscopy together with the relative changes in the Mn L2,3 edges observed in X-ray absorption spectroscopy (XAS), both strongly affected by doping. CTM4XAS simulations at the XAS Mn L2,3 edges reveal the combination of epitaxial strain, and different MnO6 crystal field splitting give rise to a peak at ∼641 eV. The observed changes in the occupancy of the eg and the t2g orbitals as well as their binding energy positions toward the Fermi level with hole doping are discussed. The room-temperature magnetic properties were probed at the end by circular dichroism.

12.
Adv Sci (Weinh) ; 9(16): e2105114, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35384406

RESUMO

The formation and the evolution of electronic metallic states localized at the surface, commonly termed 2D electron gas (2DEG), represents a peculiar phenomenon occurring at the surface and interface of many transition metal oxides (TMO). Among TMO, titanium dioxide (TiO2 ), particularly in its anatase polymorph, stands as a prototypical system for the development of novel applications related to renewable energy, devices and sensors, where understanding the carrier dynamics is of utmost importance. In this study, angle-resolved photo-electron spectroscopy (ARPES) and X-ray absorption spectroscopy (XAS) are used, supported by density functional theory (DFT), to follow the formation and the evolution of the 2DEG in TiO2 thin films. Unlike other TMO systems, it is revealed that, once the anatase fingerprint is present, the 2DEG in TiO2 is robust and stable down to a single-unit-cell, and that the electron filling of the 2DEG increases with thickness and eventually saturates. These results prove that no critical thickness triggers the occurrence of the 2DEG in anatase TiO2 and give insight in formation mechanism of electronic states at the surface of TMO.

13.
Nano Lett ; 10(12): 4819-23, 2010 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-21058711

RESUMO

We measure the optical conductivity, σ1(ω), of (SrMnO3)n/(LaMnO3)2n superlattices (SL) for n = 1, 3, 5, and 8 and 10 < T < 400 K. Data show a T-dependent insulator to metal transition (IMT) for n ≤ 3, driven by the softening of a polaronic mid-infrared band. At n = 5 that softening is incomplete, while at the largest-period n = 8 compound the MIR band is independent of T and the SL remains insulating. One can thus first observe the IMT in a Manganite system in the absence of the disorder due to chemical doping. Unsuccessful reconstruction of the SL optical properties from those of the original bulk materials suggests that (SrMnO3)n/(LaMnO3)2n heterostructures give rise to a novel electronic state.

14.
ACS Appl Mater Interfaces ; 13(46): 55666-55675, 2021 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-34758616

RESUMO

The properties of half-metallic manganite thin films depend on the composition and structure in the atomic scale, and consequently, their potential functional behavior can only be based on fine structure characterization. By combining advanced transmission electron microscopy, electron energy loss spectroscopy, density functional theory calculations, and multislice image simulations, we obtained evidence of a 7 nm-thick interface layer in La0.7Sr0.3MnO3 (LSMO) thin films, compatible with the formation of well-known dead layers in manganites, with an elongated out-of-plane lattice parameter and structural and electronic properties well distinguished from the bulk of the film. We observed, for the first time, a structural shift of Mn ions coupled with oxygen vacancies and a reduced Mn valence state within such layer. Understanding the correlation between oxygen vacancies, the Mn oxidation state, and Mn-ion displacements is a prerequisite to engineer the magnetotransport properties of LSMO thin films.

15.
ACS Appl Mater Interfaces ; 13(5): 6813-6819, 2021 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-33497183

RESUMO

Perovskite-based heterostructures have recently gained remarkable interest, thanks to atomic-scale precision engineering. These systems are very susceptible to small variations of control parameters, such as two-dimensionality, strain, lattice polarizability, and doping. Focusing on the rare-earth nickelate diagram, LaNiO3 (LNO) catches the eye, being the only nickelate that does not undergo a metal-to-insulator transition (MIT). Therefore, the ground state of LNO has been studied in several theoretical and experimental papers. Here, we show by means of infrared spectroscopy that an MIT can be driven by dimensionality control in ultrathin LNO films when the number of unit cells drops to 2. Such a dimensionality tuning can eventually be tailored when a physically implemented monolayer in the ultrathin films is replaced by a digital single layer embedded in the Ruddlesden-Popper Lan+1NinO3n+1 series. We provide spectroscopic evidence that the dimensionality-induced MIT in Ruddlesden-Popper nickelates strongly resembles that of ultrathin LNO films. Our results can pave the way to the employment of Ruddlesden-Popper Lan+1NinO3n+1 to tune the electronic properties of LNO through dimensional transition without the need of physically changing the number of unit cells in thin films.

16.
Nanomaterials (Basel) ; 11(5)2021 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-33922019

RESUMO

Topological insulators are materials with time-reversal symmetric states of matter in which an insulating bulk is surrounded by protected Dirac-like edge or surface states. Among topological insulators, Bi2Se3 has attracted special attention due to its simple surface band structure and its relatively large band gap that should enhance the contribution of its surface to transport, which is usually masked by the appearance of defects. In order to avoid this difficulty, several features characteristic of topological insulators in the quantum regime, such as the weak-antilocalization effect, can be explored through magnetotransport experiments carried out on thin films of this material. Here, we review the existing literature on the magnetotransport properties of Bi2Se3 thin films, paying thorough attention to the weak-antilocalization effect, which is omnipresent no matter the film quality. We carefully follow the different situations found in reported experiments, from the most ideal situations, with a strong surface contribution, towards more realistic cases where the bulk contribution dominates. We have compared the transport data found in literature to shed light on the intrinsic properties of Bi2Se3, finding a clear relationship between the mobility and the phase coherence length of the films that could trigger further experiments on transport in topological systems.

17.
ACS Appl Mater Interfaces ; 12(42): 47556-47563, 2020 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-32985188

RESUMO

The study of ionic materials on nanometer scale is of great relevance for efficient miniaturized devices for energy applications. The epitaxial growth of thin films can be a valid route to tune the properties of the materials and thus obtain new degrees of freedom in materials design. High crystal quality SmxCe1-xO2-δ films are here reported at a high doping level up to x = 0.4, thanks to the good lattice matching with the (110) oriented NdGaO3 substrate. X-ray diffraction and transmission electron microscopy demonstrate the ordered structural quality and absence of Sm segregation at the macroscopic and atomic level, respectively. Therefore, in epitaxial thin films, the homogeneous doping can be obtained even with the high dopant content not always approachable in bulk form, getting even an improvement of the structural properties. In situ spectroscopic measurements by X-ray photoemission and X-ray absorption show the O 2p band shift toward the Fermi level, which can favor the oxygen exchange and vacancy formation on the surface when the Sm doping is increased to x = 0.4. X-ray absorption spectroscopy also confirms the absence of ordered oxygen vacancy clusters and further reveals that the 5d eg and t2g states are well separated by the crystal field in the undistorted local structure even in the case of a high doping level up to x = 0.4.

18.
Biosensors (Basel) ; 8(1)2018 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-29547521

RESUMO

Due to their interesting ferroelectric, conductive and dielectric properties, in recent years, perovskite-structured materials have begun to attract increasing interest in the biosensing field. In this study, a strontium titanate perovskite layer (SrTiO3) has been synthesized on a platinum electrode and exploited for the development of an impedimetric label-free immunosensor for Escherichia coli O157:H7 detection. The electrochemical characterization of the perovskite-modified electrode during the construction of the immunosensor, as well as after the interaction with different E. coli O157:H7 concentrations, showed a reproducible decrease of the total capacitance of the system that was used for the analytical characterization of the immunosensor. Under optimized conditions, the capacitive immunosensor showed a linear relationship from to 1 to 7 log cfu/mL with a low detection limit of 1 log cfu/mL. Moreover, the atomic force microscopy (AFM) technique underlined the increase in roughness of the SrTiO3-modified electrode surface after antibody immobilization, as well as the effective presence of cells with the typical size of E. coli.


Assuntos
Técnicas Biossensoriais/métodos , Compostos de Cálcio/química , Óxidos/química , Titânio/química , Técnicas Biossensoriais/instrumentação , Técnicas Eletroquímicas/instrumentação , Técnicas Eletroquímicas/métodos , Eletrodos , Escherichia coli/isolamento & purificação , Platina/química , Estrôncio/química
19.
ACS Appl Mater Interfaces ; 9(27): 23099-23106, 2017 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-28613812

RESUMO

We report the study of anatase TiO2(001)-oriented thin films grown by pulsed laser deposition on LaAlO3(001). A combination of in situ and ex situ methods has been used to address both the origin of the Ti3+-localized states and their relationship with the structural and electronic properties on the surface and the subsurface. Localized in-gap states are analyzed using resonant X-ray photoelectron spectroscopy and are related to the Ti3+ electronic configuration, homogeneously distributed over the entire film thickness. We find that an increase in the oxygen pressure corresponds to an increase in Ti3+ only in a well-defined range of deposition pressure; outside this range, Ti3+ and the strength of the in-gap states are reduced.

20.
ACS Appl Mater Interfaces ; 8(23): 14613-21, 2016 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-27192540

RESUMO

Samaria-doped ceria (SDC) thin films are particularly important for energy and electronic applications such as microsolid oxide fuel cells, electrolyzers, sensors, and memristors. In this paper, we report a comparative study investigating ionic conductivity and surface reactions for well-grown epitaxial SDC films varying the samaria doping concentration. With increasing doping above 20 mol % of samaria, an enhancement in the defect association is observed by Raman spectroscopy. The role of such associated defects on the films̀ oxygen ion transport and exchange is investigated by electrochemical impedance spectroscopy and electrochemical strain microscopy (ESM). The measurements reveal that the ionic transport has a sharp maximum in ionic conductivity and drops in its activation energy down to 0.6 eV for 20 mol % doping. Increasing the doping concentration further up to 40 mol %, it raises the activation energy substantially by a factor of 2. We ascribe the sluggish transport kinetics to the "bulk" ionic-near ordering in case of the heavily doped epitaxial films. Analysis of the ESM first-order reversal curve measurements indicates that these associated defects may have a beneficial role by lowering the activation of the oxygen exchange "surface" reaction for heavily doped 40 mol % of samaria. In a model experiment, through a solid solution series of samaria doped ceria epitaxial films, we reveal that the occurrence of associated defects in the bulk affects the surface charging state of the SDC films to increase the exchange rates. The implication of these findings is the design of coatings with tuned oxygen surface exchange by controlling the bulk associated clusters for future electrocatalytic applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA