Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Environ Sci Technol ; 46(15): 8333-40, 2012 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-22765219

RESUMO

The bioaccumulation of arsenic compounds in rice is of great concern worldwide because rice is the staple food for billions of people and arsenic is one of the most toxic and carcinogenic elements at even trace amounts. The uptake of arsenic compounds in rice comes mainly from its interaction with system soil/water in the reducing conditions typical of paddy fields and is influenced by the irrigation used. We demonstrate that the use of sprinkler irrigation produces rice kernels with a concentration of total arsenic about fifty times lower when compared to rice grown under continuous flooding irrigation. The average total amount of arsenic, measured by a fully validated ICP-MS method, in 37 rice grain genotypes grown with sprinkler irrigation was 2.8 ± 2.5 µg kg(-1), whereas the average amount measured in the same genotypes grown under identical conditions, but using continuous flooding irrigation was 163 ± 23 µg kg(-1). In addition, we find that the average concentration of total arsenic in rice grains cultivated under sprinkler irrigation is close to the total arsenic concentration found in irrigation waters. Our results suggest that, in our experimental conditions, the natural bioaccumulation of this element in rice grains may be completely circumvented by adopting an appropriate irrigation technique.


Assuntos
Irrigação Agrícola , Arsênio/metabolismo , Oryza/metabolismo , Poluentes do Solo/metabolismo , Espectrometria de Massas
2.
Sci Total Environ ; 748: 142484, 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-33113683

RESUMO

The total concentration of three toxic elements (As, Cd and Pb) and five oligoelements (Cu, Mn, Mo, Ni and Se) has been determined using an original and completely validated ICP-MS method. This was applied to rice grains from 26 different genotypes cultivated in the same soil and irrigated with the same water in three different ways: by the traditional continuous flooding (CF) and by two intermittent methods, the sprinkler irrigation (SP) and the periodical saturation of the soil (SA). The adoption of SP hugely minimizes the average amounts of almost all elements in kernels (-98% for As, -90% for Se and Mn, -60% for Mo, -50% for Cd and Pb), with the only exception of Ni, whose concentration increases the average amount found in the CF rice by 7.5 times. Also SA irrigation is able to reduce the amounts of As, Mo and Pb in kernels but it significantly increases the amounts of Mn, Ni and - mainly - Cd. Also the nature of the genotype determined a wide variability of data within each irrigation method. Genotypes belonging to Indica subspecies are the best bioaccumulators of elements in both CF and SP methods and, never, the worst bioaccumulators for any element/irrigation method combination. In the principal component analysis, PC1 can differentiate samples irrigated by SP by those irrigated by CF and SA, whereas PC2 provides differentiation of CF samples by SA samples. When looking at the loading plot Ni is negatively correlated to the majority of the other elements, except Cu and Cd having negative loadings on PC2. These results allow to envisage that a proper combination of the irrigation method and the nature of rice genotype might be a very valuable tool in order to successfully achieve specific objectives of food safety or the attainment of functional properties.


Assuntos
Oryza , Poluentes do Solo , Oligoelementos , Bioacumulação , Genótipo , Oryza/genética , Solo , Poluentes do Solo/análise , Oligoelementos/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA