Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Faraday Discuss ; 222(0): 217-239, 2020 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-32108213

RESUMO

Silicon nanocrystals and nanowires have been extensively studied because of their novel properties and their applications in electronic, optoelectronic, photovoltaic, thermoelectric and biological devices. Here we discuss results from ab initio calculations for undoped and doped Si nanocrystals and nanowires, showing how theory can aid and improve comprehension of the structural, electronic and optical properties of these systems.

2.
Phys Chem Chem Phys ; 22(44): 25593-25605, 2020 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-33164017

RESUMO

We combine density functional theory and many body perturbation theory to investigate the electronic properties of Si(100) and Ge(100) surfaces terminated with halogen atoms (-I, -Br, -Cl, -F) and other chemical functionalizations (-H, -OH, -CH3) addressing the absolute values of their work function, electronic affinity and ionization potential. Our results point out that electronic properties of functionalized surfaces strongly depend on the chemisorbed species and much less on the surface crystal orientation. The presence of halogens at the surface always leads to an increment of the work function, ionization potential and electronic affinity with respect to fully hydrogenated surfaces. On the contrary, the presence of polar -OH and -CH3 groups at the surface leads to a reduction of the aforementioned quantities with respect to the H-terminated system. Starting from the work functions calculated for the Si and Ge passivated surfaces, we apply a simple model to estimate the properties of functionalized SiGe surfaces. The possibility of modulating the work function by changing the chemisorbed species and composition is predicted. The effects induced by different terminations on the band energy line-up profile of SiGe surfaces are then analyzed. Interestingly, our calculations predict a type-II band offset for the H-terminated systems and a type-I band offset for the other cases.

3.
Nano Lett ; 19(2): 866-876, 2019 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-30608707

RESUMO

We studied the physics of common p- and n-type dopants in hexagonal-diamond Si, a Si polymorph that can be synthesized in nanowire geometry without the need of extreme pressure conditions, by means of first-principles electronic structure calculations and compared our results with those for the well-known case of cubic-diamond nanowires. We showed that (i) as observed in recent experiments, at larger diameters (beyond the quantum confinement regime) p-type dopants prefer the hexagonal-diamond phase with respect to the cubic one as a consequence of the stronger degree of three-fold coordination of the former, while n-type dopants are at a first approximation indifferent to the polytype of the host lattice; (ii) in ultrathin nanowires, because of the lower symmetry with respect to bulk systems and the greater freedom of structural relaxation, the order is reversed and both types of dopant slightly favor substitution at cubic lattice sites; (iii) the difference in formation energies leads, particularly in thicker nanowires, to larger concentration differences in different polytypes, which can be relevant for cubic-hexagonal homojunctions; (iv) ultrasmall diameters exhibit, regardless of the crystal phase, a pronounced surface segregation tendency for p-type dopants. Overall these findings shed light on the role of crystal phase in the doping mechanism at the nanoscale and could have a great potential in view of the recent experimental works on group IV nanowires polytypes.

4.
Phys Chem Chem Phys ; 17(43): 29085-9, 2015 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-26461466

RESUMO

We report an ab initio investigation of fast electron energy-loss probability in silicon and germanium nanowires. Computed energy loss spectra are characterized by a strong enhancement of the direct interband transition peak at low energy, in good agreement with experimental data. Our calculations predict an important diameter dependence of the bulk volume plasmon peak for very thin wires which is consistent with the blue shift observed experimentally in thicker wires.

5.
J Am Chem Soc ; 136(11): 4404-9, 2014 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-24564481

RESUMO

In this work we aim at understanding the effect of n- and p-type substitutional doping in the case of matrix-embedded and freestanding Si nanocrystals. By means of ab initio calculations we identify the preferential positioning of the dopants and its effect on the structural properties with respect to the undoped case. Subsequently, we consider the case of phosphorus and boron co-doped nanocrystals showing that, against the single-doping situation, the energetics strongly favors the binding of the impurities at the nanocrystal surface. Indeed we demonstrate that the polar B-P bond forms a stable permanent electric dipole that radially points inward in the nanocrystal. Such a noteworthy characteristic and its physical consequences are discussed alongside new potential applications.

6.
J Am Chem Soc ; 136(38): 13257-66, 2014 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-25092549

RESUMO

We present density functional theory calculations of carrier multiplication properties in a system of strongly coupled silicon nanocrystals. Our results suggest that nanocrystal-nanocrystal interaction can lead to a reduction of the carrier multiplication energy threshold without altering the carrier multiplication efficiency at high energies, in agreement with experiments. The time evolution of the number of electron-hole pairs generated in a system of strongly interacting nanocrystals upon absorption of high-energy photons is analyzed by solving a system of coupled rate equations, where exciton recycling mechanisms are implemented. We reconsider the role played by Auger recombination which is here accounted also as an active, nondetrimental process.

7.
J Chem Phys ; 140(21): 214705, 2014 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-24908033

RESUMO

Starting from experimental findings and interface growth problems in Si/Ge superlattices, we have investigated through ab initio methods the concurrent and competitive behavior of strain and defects in the second-harmonic generation process. Interpreting the second-harmonic intensities as a function of the different nature and percentage of defects together with the strain induced at the interface between Si and Ge, we found a way to tune and enhance the second-harmonic generation response of these systems.

8.
Nano Lett ; 12(6): 2717-21, 2012 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-22545577

RESUMO

Silicon-germanium alloying is emerging as one of the most promising strategies to engineer heat transport at the nanoscale. Here, we perform first-principles electron transport calculations to assess at what extent such approach can be followed without worsening the electrical conduction properties of the system, providing then a path toward high-efficiency thermoelectric materials.


Assuntos
Ligas/química , Germânio/química , Modelos Químicos , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Silício/química , Simulação por Computador , Transporte de Elétrons
9.
J Phys Chem C Nanomater Interfaces ; 127(2): 1209-1219, 2023 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-36704663

RESUMO

The electronic properties of hydrogenated, spherical SiGe and GeSi core-shell nanocrystals, with a diameter ranging from 1.8 to 4.0 nm, are studied within density functional theory. Effects induced by quantum confinement and strain on the near-band-edge state localization, as well as the band-offset properties between Si and Ge regions, are investigated in detail. On the one hand, we prove that SiGe core-shell nanocrystals always show a type II band-offset alignment, with the HOMO mainly localized on the Ge shell region and the LUMO mainly localized on the Si core region. On the other hand, our results point out that a type II offset cannot be observed in small (diameter less than 3 nm) GeSi core-shell nanocrystals. In these systems, quantum confinement and strain drive the near-band-edge states to be mainly localized on Ge atoms, i.e., in the core region. In larger GeSi core-shell nanocrystals, instead, the formation of a type II offset can be engineered by playing with both core and shell thickness. The factors which determine the band-offset character at the Ge/Si interface are discussed in detail.

10.
Nano Lett ; 11(2): 594-8, 2011 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-21188962

RESUMO

Impurity doping of semiconducting nanowires has been predicted to become increasingly inefficient as the wire diameter is reduced, because impurity states get deeper due to quantum and dielectric confinement. We show that efficient n- and p-type doping can be achieved in SiGe core-shell nanowires as thin as 2 nm, taking advantage of the band offset at the Si/Ge interface. A one-dimensional electron (hole) gas is created at the band-edge and the carrier density is uniquely controlled by the impurity concentration with no need of thermal activation. Additionally, SiGe core-shell nanowires provide naturally the separation between the different types of carriers, electron and holes, and are ideally suited for photovoltaic applications.


Assuntos
Germânio/química , Nanotubos/química , Nanotubos/ultraestrutura , Semicondutores , Silício/química , Cristalização/métodos , Condutividade Elétrica , Transporte de Elétrons , Substâncias Macromoleculares/química , Teste de Materiais , Conformação Molecular , Nanotecnologia/métodos , Tamanho da Partícula , Propriedades de Superfície
12.
Nanoscale ; 13(28): 12119-12142, 2021 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-34250528

RESUMO

An important challenge in the field of renewable energy is the development of novel nanostructured solar cell devices which implement low-dimensional materials to overcome the limits of traditional photovoltaic systems. For optimal energy conversion in photovoltaic devices, one important requirement is that the full energy of the solar spectrum is effectively used. In this context, the possibility of exploiting features and functionalities induced by the reduced dimensionality of the nanocrystalline phase, in particular by the quantum confinement of the electronic density, can lead to a better use of the carrier excess energy and thus to an increment of the thermodynamic conversion efficiency of the system. Carrier multiplication, i.e. the generation of multiple electron-hole pairs after absorption of one single high-energy photon (with energy at least twice the energy gap of the system), can be exploited to maximize cell performance, promoting a net reduction of loss mechanisms. Over the past fifteen years, carrier multiplication has been recorded in a large variety of semiconductor nanocrystals and other nanostructures. Owing to the role of silicon in solar cell applications, the mission of this review is to summarize the progress in this fascinating research field considering carrier multiplication in Si-based low-dimensional systems, in particular Si nanocrystals, both from the experimental and theoretical point of view, with special attention given to the results obtained by ab initio calculations.

13.
J Nanosci Nanotechnol ; 8(2): 479-92, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18464361

RESUMO

Total energy calculations within the Density Functional Theory have been carried out in order to investigate the structural, electronic, and optical properties of un-doped and doped silicon nanostructures of different size and different surface terminations. In particular the effects induced by the creation of an electron-hole pair on the properties of hydrogenated silicon nanoclusters as a function of dimension are discussed in detail showing the strong interplay between the structural and optical properties of the system. The distortion induced on the structure by an electronic excitation of the cluster is analyzed and considered in the evaluation of the Stokes shift between absorption and emission energies. Besides we show how many-body effects crucially modify the absorption and emission spectra of the silicon nanocrystals. Starting from the hydrogenated clusters, different Si/O bonding at the cluster surface have been considered. We found that the presence of a Si--O--Si bridge bond originates significative excitonic luminescence features in the near-visible range. Concerning the doping, we consider B and P single- and co-doped Si nanoclusters. The neutral impurities formation energies are calculated and their dependence on the impurity position within the nanocrystal is discussed. In the case of co-doping the formation energy is strongly reduced, favoring this process with respect to the single doping. Moreover the band gap and the optical threshold are clearly red-shifted with respect to that of the pure crystals showing the possibility of an impurity based engineering of the absorption and luminescence properties of Si nanocrystals.

14.
Beilstein J Nanotechnol ; 6: 343-52, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25821673

RESUMO

One of the most important goals in the field of renewable energy is the development of original solar cell schemes employing new materials to overcome the performance limitations of traditional solar cell devices. Among such innovative materials, nanostructures have emerged as an important class of materials that can be used to realize efficient photovoltaic devices. When these systems are implemented into solar cells, new effects can be exploited to maximize the harvest of solar radiation and to minimize the loss factors. In this context, carrier multiplication seems one promising way to minimize the effects induced by thermalization loss processes thereby significantly increasing the solar cell power conversion. In this work we analyze and quantify different types of carrier multiplication decay dynamics by analyzing systems of isolated and coupled silicon nanocrystals. The effects on carrier multiplication dynamics by energy and charge transfer processes are also discussed.

15.
Nanoscale ; 7(29): 12564-71, 2015 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-26144524

RESUMO

In the present theoretical work we have considered impurities, either boron or phosphorous, located at different substitutional sites in silicon quantum dots (Si-QDs) with diameters around 1.5 nm, embedded in a SiO2 matrix. Formation energy calculations reveal that the most energetically-favored doping sites are inside the QD and at the Si/SiO2 interface for P and B impurities, respectively. Furthermore, electron and hole transport calculations show in all the cases a strong reduction of the minimum voltage threshold, and a corresponding increase of the total current in the low-voltage regime. At higher voltages, our findings indicate a significant increase of transport only for P-doped Si-QDs, while the electrical response of B-doped ones does not stray from the undoped case. These findings are of support for the employment of doped Si-QDs in a wide range of applications, such as Si-based photonics or photovoltaic solar cells.

16.
Adv Mater ; 26(32): 5639-45, 2014 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-24920491

RESUMO

Colloidal nanocrystals electronic energy levels are determined by strong size-dependent quantum confinement. Understanding the configuration of the energy levels of nanocrystal superlattices is vital in order to use them in heterostructures with other materials. A powerful method is reported to determine the energy levels of PbS nanocrystal assemblies by combining the utilization of electric-double-layer-gated transistors and advanced ab-initio theory.

17.
Nanoscale Res Lett ; 5(10): 1637-49, 2010 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-21076696

RESUMO

Actually, most of the electric energy is being produced by fossil fuels and great is the search for viable alternatives. The most appealing and promising technology is photovoltaics. It will become truly mainstream when its cost will be comparable to other energy sources. One way is to significantly enhance device efficiencies, for example by increasing the number of band gaps in multijunction solar cells or by favoring charge separation in the devices. This can be done by using cells based on nanostructured semiconductors. In this paper, we will present ab-initio results of the structural, electronic and optical properties of (1) silicon and germanium nanoparticles embedded in wide band gap materials and (2) mixed silicon-germanium nanowires. We show that theory can help in understanding the microscopic processes important for devices performances. In particular, we calculated for embedded Si and Ge nanoparticles the dependence of the absorption threshold on size and oxidation, the role of crystallinity and, in some cases, the recombination rates, and we demonstrated that in the case of mixed nanowires, those with a clear interface between Si and Ge show not only a reduced quantum confinement effect but display also a natural geometrical separation between electron and hole.

18.
Phys Rev Lett ; 98(3): 036807, 2007 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-17358714

RESUMO

We show that the electronic and optical properties of silicon nanowires, with different size and orientation, are dominated by important many-body effects. The electronic and excitonic gaps, calculated within first principles, agree with the available experimental data. Huge excitonic effects, which depend strongly on wire orientation and size, characterize the optical spectra. Modeling porous silicon as a collection of interacting nanowires, we find an absorption spectrum which is in very good agreement with experimental measurements only when the electron-hole interaction is included.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA