Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Sensors (Basel) ; 24(4)2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38400284

RESUMO

Prostate cancer (PCa) is the second most common cancer. In this paper, the isolation and properties of exosomes as potential novel liquid biopsy markers for early PCa liquid biopsy diagnosis are investigated using two prostate human cell lines, i.e., benign (control) cell line RWPE1 and carcinoma cell line 22Rv1. Exosomes produced by both cell lines are characterised by various methods including nanoparticle-tracking analysis, dynamic light scattering, scanning electron microscopy and atomic force microscopy. In addition, surface plasmon resonance (SPR) is used to study three different receptors on the exosomal surface (CD63, CD81 and prostate-specific membrane antigen-PMSA), implementing monoclonal antibodies and identifying the type of glycans present on the surface of exosomes using lectins (glycan-recognising proteins). Electrochemical analysis is used to understand the interfacial properties of exosomes. The results indicate that cancerous exosomes are smaller, are produced at higher concentrations, and exhibit more nega tive zeta potential than the control exosomes. The SPR experiments confirm that negatively charged α-2,3- and α-2,6-sialic acid-containing glycans are found in greater abundance on carcinoma exosomes, whereas bisecting and branched glycans are more abundant in the control exosomes. The SPR results also show that a sandwich antibody/exosomes/lectins configuration could be constructed for effective glycoprofiling of exosomes as a novel liquid biopsy marker.


Assuntos
Carcinoma , Exossomos , Masculino , Humanos , Exossomos/química , Biópsia Líquida , Carcinoma/metabolismo , Carcinoma/patologia , Lectinas/análise , Lectinas/metabolismo , Polissacarídeos/análise , Polissacarídeos/metabolismo
2.
Mikrochim Acta ; 190(11): 442, 2023 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-37847341

RESUMO

Electrochemical methods can be used not only for the sensitive analysis of proteins but also for deeper research into their structure, transport functions (transfer of electrons and protons), and sensing their interactions with soft and solid surfaces. Last but not least, electrochemical tools are useful for investigating the effect of an electric field on protein structure, the direct application of electrochemical methods for controlling protein function, or the micromanipulation of supramolecular protein structures. There are many experimental arrangements (modalities), from the classic configuration that works with an electrochemical cell to miniaturized electrochemical sensors and microchip platforms. The support of computational chemistry methods which appropriately complement the interpretation framework of experimental results is also important. This text describes recent directions in electrochemical methods for the determination of proteins and briefly summarizes available methodologies for the selective labeling of proteins using redox-active probes. Attention is also paid to the theoretical aspects of electron transport and the effect of an external electric field on the structure of selected proteins. Instead of providing a comprehensive overview, we aim to highlight areas of interest that have not been summarized recently, but, at the same time, represent current trends in the field.


Assuntos
Técnicas Eletroquímicas , Proteínas , Eletroquímica , Oxirredução , Transporte de Elétrons , Técnicas Eletroquímicas/métodos
3.
Bioelectrochemistry ; 152: 108457, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37196453

RESUMO

Trisaccharides bind to their interaction partners-lectins relatively weakly, which makes detection of their complexes challenging. In this work, we show that an osmolyte presence improves the distinguishing complexes of lectin Sambucus nigra with trisialyllactoses with various binding affinities. The addition of osmolyte, non-binding sugar mannose significantly improved the precision of binding experiments performed using chronopotentiometric stripping at the electrode surface and fluorescence analysis in solution. Osmolytes minimized nonspecific interactions between binding sugar and lectin. Obtained findings can be utilized in any in vitro methods studying interactions of carbohydrates, respectively their conjugates with proteins. The study of carbohydrate interactions appears important since they play essential roles in a variety of biological processes including carcinogenesis.


Assuntos
Lectinas , Sambucus nigra , Lectinas/metabolismo , Sambucus nigra/química , Sambucus nigra/metabolismo , Trissacarídeos/metabolismo , Açúcares
4.
Chem Rec ; 12(1): 27-45, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22287069

RESUMO

The ability of proteins to catalyze hydrogen evolution has been known for more than 80 years, but the poorly developed d.c. polarographic "pre-sodium wave" was of little analytical use. Recently, we have shown that by using constant current chronopotentiometric stripping analysis, proteins produce a well-developed peak H at hanging mercury drop and solid amalgam electrodes. Peak H sensitively reflects changes in protein structures due to protein denaturation, single amino acid exchange, etc. at the picomole level. Unmodified DNA and RNA do not yield such a peak, but they produce electrocatalytic voltammetric signals after modification with osmium tetroxide complexes with nitrogen ligands [Os(VIII)L], binding covalently to pyrimidine bases in nucleic acids. Recently, it has been shown that six-valent [Os(VI)L] complexes bind to 1,2-diols in polysaccharides and oligosaccharides, producing voltammetric responses similar to those of DNA-Os(VIII)L adducts. Electrocatalytic peaks produced by Os-modified nucleic acids, proteins (reaction with tryptophan residues) and carbohydrates are due to the catalytic hydrogen evolution, allowing determination of oligomers at the picomolar level.


Assuntos
Carboidratos/química , Ácidos Nucleicos/química , Proteínas/química , Catálise , DNA/química , Técnicas Eletroquímicas , Eletrodos , Hidrogênio/química , Ácidos Nucleicos/metabolismo , Tetróxido de Ósmio/química , Estrutura Terciária de Proteína , Proteínas/metabolismo
6.
Bioelectrochemistry ; 145: 108100, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35334293

RESUMO

In protein analysis, fast techniques applicable for preliminary tests of the protein structural changes are sought. We show that using constant current chronopotentiometric stripping peak H, small amounts of oligomeric, denatured and aggregated bovine serum albumin (BSA) can be easily distinguished from native form. Different behavior of native, denatured, and aggregated BSA could be explained by combination of their different adsorption at charged surface and accessibility of electroactive amino acid residues. Ability to discriminate between individual forms allows to use chronopotentiometric stripping for study of processes responsible for structural changes, such as freezing treatment.


Assuntos
Soroalbumina Bovina , Albumina Sérica , Adsorção , Peptídeos , Desnaturação Proteica , Soroalbumina Bovina/química
7.
Carbohydr Polym ; 277: 118831, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34893248

RESUMO

This work reveals the growing potential of novel electrochemical methods that are applicable for polysaccharides. It was shown for the first time that the molecules of hyaluronic acid (HA) exhibit electrochemical response using phase-sensitive alternating current (AC) voltammetry in phase-out mode. Adsorption and desorption processes of HA fragments at a charged interface of mercury electrode were observed in buffered HA solutions. Electrostatic and hydrophobic manners of interactions were distinguished for native hyaluronan fragments in a wide electric potential range. The AC voltammetry response depended on the temperature, concentration, and length of HA chains. Results of this work open possibilities for further structural characterization of widely used HA fragments and understanding manners of interactions with charged hydrophobic surfaces that could be useful in the future for understanding HA interactions at biological levels.

8.
J Am Chem Soc ; 133(18): 7190-6, 2011 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-21491862

RESUMO

We developed an innovative electrochemical method for monitoring conformational transitions in proteins using constant current chronopotentiometric stripping (CPS) with dithiothreitol-modified mercury electrodes. The method was applied to study the effect of oncogenic mutations on the DNA-binding domain of the tumor suppressor p53. The CPS responses of wild-type and mutant p53 showed excellent correlation with structural and stability data and provided additional insights into the differential dynamic behavior of the proteins. Further, we were able to monitor the loss of an essential zinc ion resulting from mutation (R175H) or metal chelation. We envisage that our CPS method can be applied to the analysis of virtually any protein as a sensor for conformational transitions or ligand binding to complement conventional techniques, but with the added benefit that only relatively small amounts of protein are needed and instant results are obtained. This work may lay the foundation for the wide application of electrochemistry in protein science, including proteomics and biomedicine.


Assuntos
Potenciometria/métodos , Proteína Supressora de Tumor p53/química , Zinco/química , Catálise , Ditiotreitol/química , Humanos , Mutação , Estrutura Terciária de Proteína/genética , Proteína Supressora de Tumor p53/genética
9.
Bioelectrochemistry ; 140: 107808, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33848875

RESUMO

In this paper we compare electrochemical behavior of two homolog proteins, namely anterior gradient 2 (AGR2) and anterior gradient 3 (AGR3), playing an important role in cancer cell biology. The slight variation in their protein structures has an impact on protein adsorption and orientation at charged surface and also enables AGR2 and AGR3 to form heterocomplexes. We confirm interaction between AGR2 and AGR3 (i) in vitro by immunochemical and constant current chronopotentiometric stripping (CPS) analysis and (ii) in vivo by bioluminescence resonance energy transfer (BRET) assay. Mutation of AGR2 in dimerization domain (E60A) prevents development of wild type AGR2 dimers and also negatively affects interaction with wild type AGR3 as shown by CPS analysis. Beside new information about AGR2 and AGR3 protein including their joint interaction, our work introduces possible applications of CPS in bioanalysis of protein complexes, including those relatively unstable, but important in the cancer research.


Assuntos
Proteínas de Transporte/química , Mucoproteínas/química , Proteínas de Neoplasias/química , Proteínas Oncogênicas/química , Multimerização Proteica , Adsorção , Humanos , Modelos Moleculares , Domínios Proteicos , Estrutura Quaternária de Proteína
10.
J Am Chem Soc ; 132(27): 9408-13, 2010 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-20557043

RESUMO

Dithiothreitol (DTT)-mercury and DTT-solid amalgam electrodes are proposed for protein microanalysis by means of constant current chronopotentiometric stripping (CPS). At the DTT-modified hanging mercury drop electrode (DTT-HMDE), proteins at nanomolar concentrations produce the CPS peak H, which is due to the protein catalyzed hydrogen evolution. Self-assembled monolayers (SAMs) of DTT at the electrode surface protected surface-attached proteins from the electric field-driven denaturation, but did not interfere with the electrocatalysis. Using CPS peak H, native and denatured forms of bovine serum albumin (BSA) and of other proteins were easily distinguished. On the other hand, in usual slow scan voltammetry (scan rates between 50 mV/s and 1 V/s), the adsorbed BSA behaved as fully or partially denatured. BSA-modified DTT-HMDE was exposed to different potentials, E(B) for 60 s, followed by CPS measurement. Three E(B) regions were observed, in which either BSA remained native (A, -0.1 to -0.3 V), was denatured (B, -0.35 to -1.4 V), or underwent desorption (C, at potentials more negative than -1.4 V). At potentials more positive than the reduction potential of the DTT Hg-S bond (approximately -0.65 V against Ag|AgCl|3 M KCl), the densely packed DTT SAM was impermeable to [Ru(NH(3))(6)](3+). At more negative potentials, the DTT SAM was disturbed, but under conditions of CPS (with very fast potential changes), this SAM still protected the protein from surface-induced denaturation. Thiol-modified Hg electrodes in combination with CPS represent a new tool for protein analysis in biomedicine and proteomics.


Assuntos
Ditiotreitol/química , Técnicas Eletroquímicas , Proteínas/análise , Animais , Catálise , Eletrodos , Hidrogênio , Conformação Proteica , Desnaturação Proteica , Proteínas/química , Soroalbumina Bovina/análise , Soroalbumina Bovina/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA