Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Transl Anim Sci ; 8: txae112, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39281313

RESUMO

Two experiments were conducted to evaluate the effect of Azomite (AZO) and 30% distillers' dried grains with solubles (DDGS) on pellet mill (PM) electrical consumption (kWh/MT), production rate, and pellet quality. Experiment 1 was conducted as a 2 × 2 × 2 factorial with main effects of diet formulation (0% or 30% DDGS), PM (1 or 2), and AZO (0% or 0.25%) with 4 replications per treatment. PMs were equipped with a 4.4 × 39.0-mm (L:D 8.9) or 4.4 × 35.8 mm (L:D 8.2) die with PM production rates held constant at 31.8 metric ton (MT)/h and conditioning temperature was held constant at approximately 82 °C. Experiment 2 was designed as a 2 × 2 factorial of treatments with 4 replicates per treatment to evaluate the impact of AZO and DDGS on PM production rates and pellet quality. PM production rate was adjusted by the feeder screw to maintain 70% motor load, a 4.0 × 35.8-mm (L:D 8.75) PM die was used, and conditioning temperature held constant at approximately 82 °C. For experiment 1, a DDGS × PM interaction (P = 0.040) was observed. Diets containing 30% DDGS had a decreased kWh/MT compared to the control when using PM-1, whereas no differences were observed for kWh/MT between 0% and 30% when using PM-2. A DDGS × PM interaction (P = 0.019) was observed for kWh/MT standard deviation (STD). Diets containing DDGS increased STD compared to the control when pelleted with PM-2; however, there was no evidence of difference between the DDGS and control diets when pelleted with PM-1. There was an AZO × DDGS interaction (P < 0.05) for kWh/ton STD. No differences were observed in kWh/ton STD when pelleting corn-soy diets with or without AZO while AZO reduced kWh/ton STD in 30% DDGS diets. Diets containing AZO had reduced (P < 0.05) kWh/MT and pellet durability index (PDI) compared to diets pelleted without AZO. PDI was improved (P < 0.05) for diets containing DDGS. For experiment 2, diets containing AZO had increased (P < 0.05) PM production rate compared to those without AZO. The inclusion of 30% DDGS reduced (P < 0.05) PM production rate compared to the corn-soy diet. There was a tendency for an AZO × DDGS interaction (P = 0.083) for PDI. Azomite inclusion to corn-soy diets reduced PDI while there was no evidence of difference in diets containing DDGS. In conclusion, the addition of 0.25% AZO to the diet improved PM efficiency; however, this potentially leads to a reduced PDI depending on diet type and PM settings.

2.
Animals (Basel) ; 14(2)2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38254449

RESUMO

This experiment aimed to evaluate commercially available disinfectants and their application methods against porcine epidemic diarrhea virus (PEDV) and porcine reproductive and respiratory syndrome virus (PRRSV) on truck cab surfaces. Plastic, fabric, and rubber surfaces inoculated with PEDV or PRRSV were placed in a full-scale truck cab and then treated with one of eight randomly assigned disinfectant treatments. After application, surfaces were environmentally sampled with cotton gauze and tested for PEDV and PRRSV using qPCR duplex analysis. There was a disinfectant × surface interaction (p < 0.0001), indicating a detectable amount of PEDV or PRRSV RNA was impacted by disinfectant treatment and surface material. For rubber surfaces, 10% bleach application had lower detectable amounts of RNA compared to all other treatments (p < 0.05) except Intervention via misting fumigation, which was intermediate. In both fabric and plastic surfaces, there was no evidence (p > 0.05) of a difference in detectable RNA between disinfectant treatments. For disinfectant treatments, fabric surfaces with no chemical treatment had less detectable viral RNA compared to the corresponding plastic and rubber (p < 0.05). Intervention applied via pump sprayer to fabric surfaces had less detectable viral RNA than plastic (p < 0.05). Furthermore, 10% bleach applied via pump sprayer to fabric and rubber surfaces had less detectable viral RNA than plastic (p < 0.05). Also, a 10 h downtime, with no chemical application or gaseous fumigation for 10 h, applied to fabric surfaces had less detectable viral RNA than other surfaces (p < 0.05). Sixteen treatments were evaluated via swine bioassay, but all samples failed to produce infectivity. In summary, commercially available disinfectants successfully reduced detectable viral RNA on surfaces but did not eliminate viral genetic material, highlighting the importance of bioexclusion of pathogens of interest.

3.
Transl Anim Sci ; 6(4): txac150, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36519006

RESUMO

Maintaining biosecurity between swine barns is challenging, and boot baths are an easily implementable option some utilize to limit pathogen spread. However, there are concerns regarding their efficacy, especially when comparing wet or dry disinfectants. The objective of this study was to evaluate the efficacy of boot baths in reducing the quantity of detectable porcine epidemic diarrhea virus (PEDV) and porcine reproductive and respiratory syndrome virus (PRRSV) genetic material using wet or dry disinfectants. Treatments included 1) control, 2) dry chlorine powder (Traffic C.O.P., PSP, LLC, Rainsville, AL), and 3) wet quaternary ammonium/glutaraldehyde liquid (1:256 Synergize, Neogen, Lexington, KY). Prior to disinfection, rubber boots were inoculated with 1 mL of a co-inoculants of PRRSV (1 × 105 TCID50 per mL) and PEDV (1 × 105 TCID50 per mL) and dried for 15 min. After the drying period, a researcher placed the boot on the right foot and stepped directly on a stainless steel coupon (control). Alternatively, the researcher stepped first into a boot bath containing either the wet or dry sanitizer, stood for 3 s, and then stepped onto a steel coupon. After one minute, an environmental swab was then collected and processed from each boot and steel coupon. The procedure was replicated 12 times per disinfectant treatment. Samples were analyzed using a duplex qPCR at the Kansas State Veterinary Diagnostic Laboratory. Cycle threshold values were analyzed using SAS GLIMMIX v 9.4 (SAS, Inc., Cary, NC). There was no evidence of a disinfectant × surface × virus interaction (P > 0.10). An interaction between disinfectant × surface impacted (P < 0.05) the quantity of detectable viral RNA. As expected, the quantity of the viruses on the coupon was greatest in the control, indicating that a contaminated boot has the ability to transfer viruses from a contaminated surface to a clean surface. Comparatively, the dry disinfectant treatment resulted in no detectable viral RNA on either the boot or subsequent coupon. The wet disinfectant treatment had statistically similar (P > 0.05) viral contamination to the control on the boot, but less viral contamination compared to the control on the metal coupon. In this experiment, a boot bath with dry powder was the most efficacious in reducing the detectable viral RNA on both boots and subsequent surfaces.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA