Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Opt Express ; 32(7): 11281-11295, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38570979

RESUMO

We report a dual-polarization radio frequency (RF) channelizer based on microcombs. Two high-Q micro-ring resonators (MRRs) with slightly different free spectral ranges (FSRs) are used: one MRR is pumped to yield soliton crystal microcombs ("active"), and the other MRR is used as a "passive" periodic optical filter supporting dual-polarization operation to slice the RF spectrum. With the tailored mismatch between the FSRs of the active and passive MRRs, wideband RF spectra can be channelized into multiple segments featuring digital-compatible bandwidths via the Vernier effect. Due to the use of dual-polarization states, the number of channelized spectral segments, and thus the RF instantaneous bandwidth (with a certain spectral resolution), can be doubled. In our experiments, we used 20 microcomb lines with ∼ 49 GHz FSR to achieve 20 channels for each polarization, with high RF spectra slicing resolutions at 144 MHz (TE) and 163 MHz (TM), respectively; achieving an instantaneous RF operation bandwidth of 3.1 GHz (TE) and 2.2 GHz (TM). Our approach paves the path towards monolithically integrated photonic RF receivers (the key components - active and passive MRRs are all fabricated on the same platform) with reduced complexity, size, and unprecedented performance, which is important for wide RF applications with digital-compatible signal detection.

2.
Light Sci Appl ; 13(1): 94, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38658538

RESUMO

Integrated switches play a crucial role in the development of reconfigurable optical add-drop multiplexers (ROADMs) that have greater flexibility and compactness, ultimately leading to robust single-chip solutions. Despite decades of research on switches with various structures and platforms, achieving a balance between dense integration, low insertion loss (IL), and polarization-dependent loss (PDL) remains a significant challenge. In this paper, we propose and demonstrate a 32 × 4 optical switch using high-index doped silica glass (HDSG) for ROADM applications. This switch is designed to route any of the 32 inputs to the express ports or drop any channels from 32 inputs to the target 4 drop ports or add any of the 4 ports to any of the 32 express channels. The switch comprises 188 Mach-Zehnder Interferometer (MZI) type switch elements, 88 optical vias for the 44 optical bridges, and 618 waveguide-waveguide crossings with three-dimensional (3D) structures. At 1550 nm, the fiber-to-fiber loss for each express channel is below 2 dB, and across the C and L bands, below 3 dB. For each input channel to all 4 drop/add channels at 1550 nm, the loss is less than 3.5 dB and less than 5 dB across the C and L bands. The PDLs for all express and input channels to the 4 drop/add channels are below 0.3 dB over the C band, and the crosstalk is under -50 dB for both the C and L bands.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA