Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 88
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Small ; : e2312036, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38396208

RESUMO

Vanadium-based materials, due to their diverse valence states and open-framework lattice, are promising cathodes for aqueous zinc ion batteries (AZIBs), but encounters the major challenges of in situ electrochemical activation process, potent polarity of the aqueous electrolyte and periodic expansion/contraction for efficient Zn2+ storage. Herein, architecting vanadium nitride (VN) nanosheets over titanium-based hollow nanoarrays skeletal host (denoted VNTONC) can simultaneously modulate address those challenges by creating multiple interfaces and maintaining the (1 1 1) phase of VN, which optimizes the Zn2+ storage and the stability of VN. Benefiting from the modulated crystalline thermodynamics during the electrochemical activation of VN, two outcomes are achieved; I) the cathode transforms into a nanocrystalline structure with increased active sites and higher conductivity and; II) a significant portion of the (1 1 1) crystal facets is retained in the process leading to the additional Zn2+ storage capacity. As a result, the as-prepared VNTONC electrode demonstrates remarkable discharge capacities of 802.5 and 331.8 mAh g-1 @ 0.5 and 6.0 A g-1 , respectively, due to the enhanced kinetics as validated by theoretical calculations. The assembled VNTONC||Zn flexible ZIB demonstrates excellent Zn storage properties up to 405.6 mAh g-1 , and remarkable robustness against extreme operating conditions.

2.
Small ; 20(22): e2307103, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38213015

RESUMO

Flexible lithium-ion batteries (FLIBs) are intensively studied using free-standing transition metal oxides (TMOs)-based anode materials. However, achieving high areal capacity TMO-based anode materials is yet to be effectively elucidated owing to the poor adhesion of the active materials to the flexible substrate resulting in low active mass loading, and hence low areal capacity is realized. Herein, a novel monolithic rutile TiO2 microparticles on carbon cloth (ATO/CC) that facilitate the flower-like arrangement of TiO2 nanowires (denoted ATO/CC/OTO) is demonstrated as high areal capacity anode for FLIBs. The optimized ATO/CC/OTO anode exhibits high areal capacity (5.02 mAh cm-2@0.4 mA cm-2) excellent rate capability (1.17 mAh cm-2@5.0 mA cm-2) and remarkable cyclic stability (over 500 cycles). A series of morphological, kinetic, electrochemical, in situ Raman, and theoretical analyses reveal that the rational phase boundaries between the microparticles and nanowires contribute to promoting the Li storage activity. Furthermore, a 16.0 cm2 all-FLIB pouch cell assembled based on the ATO/CC/OTO anode and LiNiCoMnO2 cathode coated on ATO/CC (ATO/CC/LNCM) exhibits impressive flexibility under different folding conditions, creating opportunity for the development of high areal capacity anodes in future flexible energy storage devices.

3.
Small ; : e2311773, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38446094

RESUMO

Active sites, mass loading, and Li-ion diffusion coefficient are the benchmarks for boosting the areal capacity and storage capability of electrode materials for lithium-ion batteries. However, simultaneously modulating these criteria to achieve high areal capacity in LIBs remains challenging. Herein, MoS2 is considered as a suitable electroactive host material for reversible Li-ion storage and establish an endogenous multi-heterojunction strategy with interfacial Mo-C/N-Mo-S coordination bonding that enables the concurrent regulation of these benchmarks. This strategy involves architecting 3D integrated conductive nanostructured frameworks composed of Mo2 C-MoN@MoS2 on carbon cloth (denoted as C/MMMS) and refining the sluggish kinetics in the MoS2 -based anodes. Benefiting from the rich hetero-interface active sites, optimized Li adsorption energy, and low diffusion barrier, C/MMMS reaches a mass loading of 12.11 mg cm-2 and showcases high areal capacity and remarkable rate capability of 9.6 mAh cm-2 @0.4 mA cm-2 and 2.7 mAh cm-2 @6.0 mA cm-2 , respectively, alongside excellent stability after 500 electrochemical cycles. Moreover, this work not only affirms the outstanding performance of the optimized C/MMMS as an anode material for supercapacitors, underscoring its bifunctionality but also offers valuable insight into developing endogenous transition metal compound electrodes with high mass loading for the next-generation high areal capacity energy storage devices.

4.
Angew Chem Int Ed Engl ; 63(6): e202313597, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-37853853

RESUMO

Electrocatalytic CO2 -to-syngas (gaseous mixture of CO and H2 ) is a promising way to curb excessive CO2 emission and the greenhouse gas effect. Herein, we present a bimetallic AuZn@ZnO (AuZn/ZnO) catalyst with high efficiency and durability for the electrocatalytic reduction of CO2 and H2 O, which enables a high Faradaic efficiency of 66.4 % for CO and 26.5 % for H2 and 3 h stability of CO2 -to-syngas at -0.9 V vs. the reversible hydrogen electrode (RHE). The CO/H2 ratios show a wide range from 0.25 to 2.50 over a narrow potential window (-0.7 V to -1.1 V vs. RHE). In situ attenuated total reflection surface-enhanced infrared absorption spectroscopy combined with density functional theory calculations reveals that the bimetallic synergistic effect between Au and Zn sites lowers the activation energy barrier of CO2 molecules and facilitates electronic transfer, further highlighting the potential to control CO/H2 ratios for efficient syngas production using the coexisting Au sites and Zn sites.

5.
Angew Chem Int Ed Engl ; 63(2): e202314099, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38059828

RESUMO

Zn-based catalysts hold great potential to replace the noble metal-based ones for CO2 reduction reaction (CO2 RR). Undercoordinated Zn (Znδ+ ) sites may serve as the active sites for enhanced CO production by optimizing the binding energy of *COOH intermediates. However, there is relatively less exploration into the dynamic evolution and stability of Znδ+ sites during CO2 reduction process. Herein, we present ZnO, Znδ+ /ZnO and Zn as catalysts by varying the applied reduction potential. Theoretical studies reveal that Znδ+ sites could suppress HER and HCOOH production to induce CO generation. And Znδ+ /ZnO presents the highest CO selectivity (FECO 70.9 % at -1.48 V vs. RHE) compared to Zn and ZnO. Furthermore, we propose a CeO2 nanotube with confinement effect and Ce3+ /Ce4+ redox to stabilize Znδ+ species. The hollow core-shell structure of the Znδ+ /ZnO/CeO2 catalyst enables to extremely expose electrochemically active area while maintaining the Znδ+ sites with long-time stability. Certainly, the target catalyst affords a FECO of 76.9 % at -1.08 V vs. RHE and no significant decay of CO selectivity in excess of 18 h.

6.
Inorg Chem ; 62(23): 8923-8930, 2023 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-37246851

RESUMO

As a result of their optical and redox properties, bipyridyl (bpy) and terpyridyl (tpy) ruthenium complexes play vital roles in numerous domains. Herein, the design and synthesis of two bipyridyl and terpyridyl ruthenium(II) building units L1 and L2 are explained. A [Ru(bpy)3]2+ functionalized triangle S1 and a Sierpinski triangle S2 were synthesized in almost quantitative yields by the self-assembly of L1 with Zn2+ ions and by the heteroleptic self-assembly of L1 and L2 with Zn2+ ions, respectively. The Sierpinski triangle S2 contains the coordination metals [Ru(bpy)3]2+, [Ru(tpy)2]2+, and [Zn(tpy)2]2+. According to research on the catalytic activity of amine oxidation on supramolecules S1 and S2, the benzylamine substrates were nearly entirely transformed to N-benzylidenebenzylamine derivatives after 1 h under a Xe lamp. Furthermore, the observed ruthenium-containing terpyridyl supramolecule S2 maintains high luminous performance at ambient temperature. This discovery opens up new possibilities for the rational molecular design of terpyridyl ruthenium fluorescent materials and catalytic functional materials.

7.
Arch Microbiol ; 204(3): 179, 2022 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-35174423

RESUMO

A novel Gram-stain-negative, aerobic, motile and rod-shaped bacterium, designated as strain YIM B00319T, was isolated from a sediment sample obtained from Wuzunbulake salt Lake in Xinjiang Uygur Autonomous Region, northwest China. Phylogenetic analysis based on 16S rRNA gene sequences along with the whole genome showed that strain YIM B00319T belongs to the family Bacillaceae and was most closely related to Bacillus horti K13T and Caldalkalibacillus mannanilyticus JCM 10596T, with sequence similarities of 95.7% and 94.6%, respectively. The genome of strain YIM B00319T was 3.77 Mbp with a DNA G + C content of 43%. Strain YIM B00319T grew at 15-45 ℃, pH 7.0-9.5 and with 3-11% (w/v) NaCl. The major respiratory quinone of strain YIM B00319T was MK-7, and the major fatty acids (> 10%) were iso-C15:0, anteiso-C15:0, and summed feature 3 (C16:1 ω6c and/or C16:1 ω7c). The main polar lipids were phosphatidylethanolamine (PE), phosphatidylglycerol (PG), and diphosphatidylglycerol (DPG). The cell-wall peptidoglycan contained meso-diaminopimelic acid. On the basis of the phenotypic, chemotaxonomic, genomic, and phylogenetic information, strain YIM B00319T represents a novel species of the genus Caldalkalibacillus, for which the name Caldalkalibacillus salinus sp. nov. is proposed. The type strain is YIM B00319T (= CGMCC 1.18750T = NBRC 115338T).


Assuntos
Bacillaceae , Lagos , Técnicas de Tipagem Bacteriana , China , DNA Bacteriano/genética , Ácidos Graxos/análise , Lagos/microbiologia , Hibridização de Ácido Nucleico , Fosfolipídeos/análise , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
8.
Clin Exp Pharmacol Physiol ; 49(4): 536-543, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35108422

RESUMO

Previous studies reported inconsistent findings on autophagy activation in skeletal muscles after acute exercise. In this study, we investigated the effect of a single bout of exhaustive treadmill exercise on AMPK and autophagy activations in mice gastrocnemius muscle in vivo. Male ICR/CD-1 mice were randomly divided into the control and exercise groups. The later was subjected to a single bout of exhaustive treadmill exercise. Changes of AMPK, phosphorylation of AMPKThr172 (pAMPKThr172 ), and autophagy markers including Beclin1, LC3II/LC3I and p62 mRNA and protein expressions in gastrocnemius muscle at different times (0, 6, 12, 24 h) after the exercise were analysed by quantitative real-time PCR and western blot. Our results demonstrated that a single bout of exhaustive treadmill exercise significantly induced AMPK content and AMPK activity at 0, 6 and 12 h after the exercise, and changed the expressions of autophagy markers at different time points in the recovery period, respectively. Moreover, we observed positive correlations between expressions of LC3II/LC3I ratio and pAMPKThr172 or AMPK, and a negative correlation between expressions of p62 and AMPK or pAMPKThr172 . In conclusion, a single bout of exhaustive treadmill exercise in mice caused a prolonged activation of AMPK and improved autophagy in the gastrocnemius muscle. The regulation of autophagic markers were related to enhanced AMPK activity. The findings indicate that acute exercise enhanced AMPK-related autophagy activation may be the underlying molecular mechanism that regulates cellular energy metabolism during exercise.


Assuntos
Proteínas Quinases Ativadas por AMP , Condicionamento Físico Animal , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Autofagia/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos ICR , Músculo Esquelético/metabolismo , Condicionamento Físico Animal/fisiologia
9.
Angew Chem Int Ed Engl ; 61(31): e202206050, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35582843

RESUMO

Despite the fact that high-valent nickel-based oxides exhibit promising catalytic activity for the urea oxidation reaction (UOR), the fundamental questions concerning the origin of the high performance and the structure-activity correlations remain to be elucidated. Here, we unveil the underlying enhanced mechanism of UOR by employing a series of prepared cation-vacancy controllable LiNiO2 (LNO) model catalysts. Impressively, the optimized layered LNO-2 exhibits an extremely low overpotential at 10 mA cm-2 along with excellent stability after the 160 h test. Operando characterisations combined with the theoretical analysis reveal the activated lattice oxygen in layered LiNiO2 with moderate cation vacancies triggers charge disproportion of the Ni site to form Ni4+ species, facilitating deprotonation in a lattice oxygen involved catalytic process.

10.
NMR Biomed ; 34(6): e4505, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33783927

RESUMO

Serum metabolites of healthy controls and esophageal cancer (EC) patients have previously been compared to predict cancer-specific profiles. However, the association between metabolic alterations in serum samples and esophageal tissues in EC patients remains unclear. Here, we analyzed 50 pairs of EC tissues and distant noncancerous tissues, together with patient-matched serum samples, using 1 H NMR spectroscopy and pattern recognition algorithms. EC patients could be differentiated from the controls based on the metabolic profiles at tissue and serum levels. Some overlapping discriminatory metabolites, including valine, alanine, glucose, acetate, citrate, succinate and glutamate, were identified in both matrices. These results suggested deregulation of metabolic pathways, and potentially revealed the links between EC and several metabolic pathways, such as the tricarboxylic acid cycle, glutaminolysis, short-chain fatty acid metabolism, lipometabolism and pyruvate metabolism. Perturbation of the pyruvate metabolism was most strongly associated with EC progression. Consequently, an optimal serum metabolite biomarker panel comprising acetate and pyruvate was developed, as these two metabolites are involved in pyruvate metabolism, and changes in their serum levels were significantly correlated with alterations in the levels of some other esophageal tissue metabolites. In comparison with individual biomarkers, this panel exhibited better diagnostic efficiency for EC, with an AUC of 0.948 in the test set, and a good predictive ability of 82.5% in the validation set. Analysis of key genes related to pyruvate metabolism in EC patients revealed patterns corresponding to the changes in serum pyruvate and acetate levels. These correlation analyses demonstrate that there were distinct metabolic characteristics and pathway aberrations in the esophageal tumor tissue and in the serum. Changes in the serum metabolic signatures could reflect the alterations in the esophageal tumor profile, thereby emphasizing the importance of distinct serum metabolic profiles as potential noninvasive biomarkers for EC.


Assuntos
Biomarcadores Tumorais/sangue , Neoplasias Esofágicas/sangue , Neoplasias Esofágicas/diagnóstico por imagem , Metabolômica , Espectroscopia de Prótons por Ressonância Magnética , Adulto , Idoso , Estudos de Casos e Controles , Neoplasias Esofágicas/diagnóstico , Neoplasias Esofágicas/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Redes e Vias Metabólicas , Pessoa de Meia-Idade , Ácido Pirúvico/metabolismo , Reprodutibilidade dos Testes , Extratos de Tecidos/metabolismo
11.
Chemistry ; 27(18): 5796-5802, 2021 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-33491256

RESUMO

The high charge-discharge voltage gap is one of the main bottlenecks of zinc-air batteries (ZABs) because of the kinetically sluggish oxygen reduction/evolution reactions (ORR/OER) on the oxygen electrode side. Thus, an efficient bifunctional catalyst for ORR and OER is highly desired. Herein, honeycomb-like MnCo2 O4.5 spheres were used as an efficient bifunctional electrocatalyst. It was demonstrated that both ORR and OER catalytic activity are promoted by MnIV -induced oxygen vacancy defects and multiple active sites. Importantly, the multivalent ions present in the material and its defect structure endow stable pseudocapacitance within the inactive region of ORR and OER; as a result, a low charge-discharge voltage gap (0.43 V at 10 mA cm-2 ) was achieved when it was employed in a flexible hybrid Zn-based battery. This mechanism provides unprecedented and valuable insights for the development of next-generation metal-air batteries.

12.
Environ Toxicol ; 36(9): 1817-1828, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34080770

RESUMO

Fluoride is a persistent environmental pollutant, and its excessive intake contributes to skeletal and dental fluorosis. The mechanisms underlying fluoride-induced abnormal osteoblast proliferation and activation, which are related to skeletal fluorosis, have not yet been fully clarified. As important epigenetic regulators, microRNAs (miRNAs) participate in bone metabolism. On the basis of our previous miRNA-seq results and bioinformatics analysis, this study investigated the role and specific molecular mechanism of miR-486-3p in fluoride-induced osteoblast proliferation and activation via CyclinD1. Herein, in the fluoride-challenged population, we observed that miR-486-3p expression decreased while CyclinD1 and transforming growth factor (TGF)-ß1 increased, and miR-486-3p level correlated negatively with the expression of CyclinD1 and TGF-ß1 genes. Further, we verified that sodium fluoride (NaF) decreases miR-486-3p expression in human osteoblasts and overexpression of miR-486-3p reduces fluoride-induced osteoblast proliferation and activation. Meanwhile, we demonstrated that miR-486-3p regulates NaF-induced upregulation of CyclinD1 by directly targeting its 3'-untranslated region (3'-UTR). In addition, we observed that NaF activates the TGF-ß1/Smad2/3/CyclinD1 axis and miR-486-3p mediates transcriptional regulation of CyclinD1 by TGF-ß1/Smad2/3 signaling pathway via targeting TGF-ß1 3'-UTR in vitro. This study, thus, contributes significantly in revealing the mechanism of miR-486-3p-mediated CyclinD1 upregulation in skeletal fluorosis and sheds new light on endemic fluorosis treatment.


Assuntos
Fluoretos , MicroRNAs , Regiões 3' não Traduzidas , Proliferação de Células , Fluoretos/toxicidade , Humanos , MicroRNAs/genética , Osteoblastos , Fator de Crescimento Transformador beta1/genética
13.
Angew Chem Int Ed Engl ; 60(17): 9546-9552, 2021 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-33559336

RESUMO

The catalytic conversion of alcohols under mild conditions is a great challenge because it is constrained by low selectivity and low activity. Herein, we demonstrate a hollow nanotube Fe2 O3 /MoO3 heterojunction (FeMo-2) for the photoelectrocatalytic conversion of small-molecule alcohols. Experimental and theoretical analyses reveal that the optical carrier transfer rate is enhanced by constructing interfacial internal electric fields and Fe-O-Mo charge transfer channels. For the formox process, heterojunctions possess superior HCHO-selective reaction paths and free energy transitions, optimizing the selectivity of HCHO and enhancing the reactivity. FeMo-2 shows a greatly improved performance compared to single Fe2 O3 ; the photocurrent density of FeMo-2 reaches 0.66 mA cm-2 , which is 3.88 times that of Fe2 O3 (0.17 mA cm-2 ), and the Faraday efficiency of the CH3 OH-to-HCHO conversion is 95.7 %. This work may deepen our understanding of interfacial charge separation and has potential for the production of HCHO and for conversion reactions of other small-molecule alcohols at cryogenic temperatures.

14.
Chemistry ; 26(62): 14024-14035, 2020 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-32314408

RESUMO

One of the most effective ways to cope with the problems of global warming and the energy shortage crisis is to develop renewable and clean energy sources. To achieve a carbon-neutral energy cycle, advanced carbon sequestration technologies are urgently needed, but because CO2 is a thermodynamically stable molecule with the highest carbon valence state of +4, this process faces many challenges. In recent years, electrochemical CO2 reduction has become a promising approach to fix and convert CO2 into high-value-added fuels and chemical feedstock. However, the large-scale commercial use of electrochemical CO2 reduction systems is hindered by poor electrocatalyst activity, large overpotential, low energy conversion efficiency, and product selectivity in reducing CO2 . Therefore, there is an urgent need to rationally design highly efficient, stable, and scalable electrocatalysts to alleviate these problems. This minireview also aims to classify heterogeneous nanostructured electrocatalysts for the CO2 reduction reaction (CDRR).

15.
Angew Chem Int Ed Engl ; 59(16): 6492-6499, 2020 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-31984615

RESUMO

Herein, we highlight redox-inert Zn2+ in spinel-type oxide (ZnX Ni1-X Co2 O4 ) to synergistically optimize physical pore structure and increase the formation of active species on the catalyst surface. The presence of Zn2+ segregation has been identified experimentally and theoretically under oxygen-evolving condition, the newly formed VZn -O-Co allows more suitable binding interaction between the active center Co and the oxygenated species, resulting in superior ORR performance. Moreover, a liquid flow Zn-air battery is constituted employing the structurally optimized Zn0.4 Ni0.6 Co2 O4 nanoparticles supported on N-doped carbon nanotube (ZNCO/NCNTs) as an efficient air cathode, which presents remarkable power density (109.1 mW cm-2 ), high open circuit potential (1.48 V vs. Zn), excellent durability, and high-rate performance. This finding could elucidate the experimentally observed enhancement in the ORR activity of ZnX Ni1-X Co2 O4 oxides after the OER test.

16.
Angew Chem Int Ed Engl ; 59(29): 11948-11957, 2020 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-32337761

RESUMO

Transition-metal oxides as electrocatalysts for the oxygen evolution reaction (OER) provide a promising route to face the energy and environmental crisis issues. Although palmeirite oxide A2 Mo3 O8 as OER catalyst has been explored, the correlation between its active sites (tetrahedral or octahedral) and OER performance has been elusive. Now, magnetic Co2 Mo3 O8 @NC-800 composed of highly crystallized Co2 Mo3 O8 nanosheets and ultrathin N-rich carbon layer is shown to be an efficient OER catalyst. The catalyst exhibits favorable performance with an overpotential of 331 mV@10 mA cm-2 and 422 mV@40 mA cm-2 , and a full water-splitting electrolyzer with it as anode catalyst shows a cell voltage of 1.67 V@10 mA cm-2 in alkaline. Combined HAADFSTEM, magnetic, and computational results show that factors influencing the OER performance can be attributed to the tetrahedral Co sites (high spin, t2 3 e4 ), which improve the OER kinetics of rate-determining step to form *OOH.

17.
Int J Cancer ; 145(6): 1679-1689, 2019 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-30720869

RESUMO

Previous studies have compared fecal metabolites from healthy and colorectal cancer (CRC) patients to predict the pro-CRC signatures. However, the systemic mechanistic link between feces and colonic tissues of CRC patients is still limited. The current study was a paralleled investigation of colonic tumor tissues and their normal adjacent tissues alongside patient-matched feces by using 1 H nuclear magnetic resonance spectroscopy combined with pattern recognition to investigate how fecal metabolic phenotypes are linked to the changes in colorectal tumor profiles. A set of overlapping discriminatory metabolites across feces and tumor tissues of CRC were identified, including elevated levels of lactate, glutamate, alanine, succinate and reduced amounts of butyrate. These changes could indicate the networks for metabolic pathway perturbations in CRC potentially involved in the disruptions of glucose and glycolytic metabolism, TCA cycle, glutaminolysis, and short chain fatty acids metabolism. Furthermore, changes in fecal acetate were positively correlated with alterations of glucose and myo-inositol in colorectal tumor tissues, implying enhanced energy production for rapid cell proliferation. Compared to other fecal metabolites, acetate demonstrated the highest diagnostic performance for diagnosing CRC, with an AUC of 0.843 in the training set, and a good predictive ability in the validation set. Overall, these associations provide evidence of distinct metabolic signatures and metabolic pathway disturbances between the colonic tissues and feces within the same individual, and changes of fecal metabolic signature could reflect the CRC tissue microenvironment, highlighting the significance of the distinct fecal metabolic profiles as potential novel and noninvasive relevant indicators for CRC detection.


Assuntos
Neoplasias Colorretais/metabolismo , Fezes , Metabolômica , Espectroscopia de Prótons por Ressonância Magnética/métodos , Biomarcadores Tumorais/metabolismo , Estudos de Casos e Controles , Neoplasias Colorretais/diagnóstico , Neoplasias Colorretais/patologia , Detecção Precoce de Câncer , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
18.
Pharmacology ; 103(5-6): 263-272, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30783055

RESUMO

BACKGROUND: Crocetin is a carotenoid extracted from the traditional Chinese medical herb saffron. Previous studies have demonstrated that crocetin possesses anticancer properties that are effective against various cancers. As an extension of our earlier study, the present study explored the underlying mechanisms in crocetin's anticancer effect on KYSE-150 cells. The phosphatidylinositol-3-kinase (PI3K)/protein kinase B (AKT), Mitogen-activated protein kinases (MAPK), and p53/p21 signal pathways play an important role in carcinogenesis, progression, and metastasis of carcinoma cells. Thus, we investigated crocetin's effects on the PI3K/AKT, MAPK, and p53/p21 pathways in esophageal squamous carcinoma cell line KYSE-150 cells. METHODS: KYSE-150 cells were treated with various concentrations of crocetin. 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltertrazolium bromide assay, Annexin V/PI stain as well as Rh123 stain were used to evaluate the cell viability, apoptosis, and MMP. Western blot was used to detect the expression of PI3K, AKT, ERK1/2, p38, c-Jun NH-terminal kinase (JNK), P53, P21, Bcl-2, Bax, and cleaved caspase-3, which were associated with cell proliferation and apoptosis. RESULTS: Our results showed that crocetin significantly inhibited the proliferation of KYSE-150 cells in a dose- and time-dependent manner. Crocetin also markedly induced cell apoptosis. Furthermore, we have found that crocetin not only inhibited the activation of PI3K/AKT, extracellular signal-regulated kinase-1/2 (ERK1/2), and p38 but also upregulated the p53/p21 level. These regulations ultimately triggered the mitochondrial-mediated apoptosis pathway with an eventual disruption of MMP, increased levels of Bax and cleaved caspase-3, and decreased levels of Bcl-2. CONCLUSIONS: These findings suggested that crocetin interfered with multiple signal pathways in KYSE-150 cells. Therefore, this study suggested that crocetin could potentially be used as a therapeutic candidate for the treatment of esophageal cancer.


Assuntos
Anticarcinógenos/farmacologia , Carotenoides/farmacologia , Neoplasias Esofágicas/tratamento farmacológico , Carcinoma de Células Escamosas do Esôfago/tratamento farmacológico , Anticarcinógenos/administração & dosagem , Apoptose/efeitos dos fármacos , Carotenoides/administração & dosagem , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Neoplasias Esofágicas/patologia , Carcinoma de Células Escamosas do Esôfago/patologia , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Fatores de Tempo , Vitamina A/análogos & derivados
19.
Environ Monit Assess ; 191(6): 395, 2019 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-31123882

RESUMO

Trace element contamination caused by mining is a serious environmental problem. The potential effects of exploiting the Yunfu pyrite mine (southern China) on soil were investigated by determining trace elements in 56 surface soil samples from the vicinity of the Yunfu pyrite mine. The samples were acid dissolved and measured by an inductively coupled plasma mass spectrometry (ICP-MS). Principal component analysis and hierarchical cluster analysis were used to identify factors influencing the trace element contents and possible sources of the trace elements. The degree of trace element pollution was determined using the geological accumulation index Igeo. Monte Carlo simulations were used to assess the health risks posed. The results show that (1) six factors (parent material, mining activities, ore composition, rainfall, terrain, and other inputs) strongly affected the trace element contents of the soil samples. (2) There were three groups of trace elements, according to their possible sources. One group (Cs, Ga, Ge, Hf, Nb, Rb, Ta, Th, Ti, U, and Zr) mainly originated in parent rocks. Another group (Cr, Ni, Sr, and V) was mainly supplied by industrial plants and traffic emissions. The third group (Ba, Co, Cu, Mn, Pb, and Zn) was mainly supplied through pyrite ore exploitation processes. (3) Some samples were slightly to moderately polluted with Cs, Ga, Ge, Nb, Rb, Ta, and Ti. Most samples were moderately to highly polluted with Ba, Co, Cu, Mn, Pb, and Zn. (4) Trace elements in soil pose strong non-carcinogenic and carcinogenic health risks to people (particularly children) living near the Yunfu pyrite mine.


Assuntos
Monitoramento Ambiental/métodos , Metais Pesados/análise , Poluentes do Solo/análise , Oligoelementos/análise , Criança , China , Humanos , Ferro , Mineração , Solo/química , Sulfetos
20.
Angew Chem Int Ed Engl ; 58(38): 13291-13296, 2019 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-31317625

RESUMO

Bimetallic cobalt-based spinel is sparking much interest, most notably for its excellent bifunctional performance. However, the effect of Fe3+ doping in Co3 O4 spinel remains poorly understood, mainly because the surface state of a catalyst is difficult to characterize. Herein, a bifunctional oxygen electrode composed of spinel Co2 FeO4 /(Co0.72 Fe0.28 )Td (Co1.28 Fe0.72 )Oct O4 nanoparticles grown on N-doped carbon nanotubes (NCNTs) is designed, which exhibits superior performance to state-of-the-art noble metal catalysts. Theoretical calculations and magnetic measurements reveal that the introduction of Fe3+ ions into the Co3 O4 network causes delocalization of the Co 3d electrons and spin-state transition. Fe3+ ions can effectively activate adjacent Co3+ ions under the action of both spin and charge effect, resulting in the enhanced intrinsic oxygen catalytic activity of the hybrid spinel Co2 FeO4 . This work provides not only a promising bifunctional electrode for zinc-air batteries, but also offers a new insight to understand the Co-Fe spinel oxides for oxygen electrocatalysis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA