Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Anal Bioanal Chem ; 416(18): 4207-4218, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38822822

RESUMO

Mass spectrometry imaging (MSI) platforms such as infrared matrix-assisted laser desorption electrospray ionization (IR-MALDESI) are advantageous for a variety of applications, including elucidating the localization of neurotransmitters (NTs) and related molecules with respect to ion abundance across a sample without the need for derivatization or organic matrix application. While IR-MALDESI-MSI conventionally uses a thin exogenous ice matrix to improve signal abundance, it has been previously determined that sucrose embedding without the ice matrix improves detection of lipid species in striatal, coronal mouse brain sections. This work considers components of this workflow to determine the optimal sample preparation and matrix to enhance the detection of NTs and their related metabolites in coronal sections from the striatal region of the mouse brain. The discoveries herein will enable more comprehensive follow-on studies for the investigation of NTs to enrich biological pathways and interpretation related to neurodegenerative diseases and ischemic stroke.


Assuntos
Encéfalo , Neurotransmissores , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Animais , Neurotransmissores/análise , Neurotransmissores/metabolismo , Camundongos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Encéfalo/metabolismo , Camundongos Endogâmicos C57BL , Química Encefálica
2.
Adv Funct Mater ; 30(48)2020 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-33692663

RESUMO

Obesity increases the risk and worsens the prognosis for breast cancer due, in part, to altered adipose stromal cell (ASC) behavior. Whether ASCs from obese individuals increase migration of breast cancer cells relative to their lean counterparts, however, remains unclear. To test this connection, multicellular spheroids composed of MCF10A-derived tumor cell lines of varying malignant potential and lean or obese ASCs were embedded into collagen scaffolds mimicking the elastic moduli of interstitial breast adipose tissue. Confocal image analysis suggests that tumor cells alone migrate insignificantly under these conditions. However, direct cell-cell contact with either lean or obese ASCs enables them to migrate collectively, whereby obese ASCs activate tumor cell migration more effectively than their lean counterparts. Time-resolved optical coherence tomography (OCT) imaging suggests that obese ASCs facilitate tumor cell migration by mediating contraction of local collagen fibers. Matrix metalloproteinase (MMP)-dependent proteolytic activity significantly contributes to ASC-mediated tumor cell invasion and collagen deformation. However, ASC contractility is also important, as co-inhibition of both MMPs and contractility is necessary to completely abrogate ASC-mediated tumor cell migration. These findings imply that obesity-mediated changes of ASC phenotype may impact tumor cell migration and invasion with potential implications for breast cancer malignancy in obese patients.

3.
Cell Rep ; 39(13): 111012, 2022 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-35767962

RESUMO

Ovarian cancer (OC) is the most lethal gynecological malignancy, with aggressive metastatic disease responsible for the majority of OC-related deaths. In particular, OC tumors preferentially metastasize to and proliferate rapidly in the omentum. Here, we show that metastatic OC cells experience increased oxidative stress in the omental microenvironment. Metabolic reprogramming, including upregulation of the pentose phosphate pathway (PPP), a key cellular redox homeostasis mechanism, allows OC cells to compensate for this challenge. Inhibition of glucose-6-phosphate dehydrogenase (G6PD), the rate-limiting enzyme of the PPP, reduces tumor burden in pre-clinical models of OC, suggesting that this adaptive metabolic dependency is important for OC omental metastasis.


Assuntos
Glucosefosfato Desidrogenase , Neoplasias Ovarianas , Carcinoma Epitelial do Ovário , Feminino , Glucosefosfato Desidrogenase/metabolismo , Humanos , Omento/metabolismo , Estresse Oxidativo , Via de Pentose Fosfato , Microambiente Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA