RESUMO
Laser-induced breakdown spectroscopy (LIBS) is a form of optical emission spectroscopy that can be used for the rapid analysis of geological materials in the field under ambient environmental conditions. We describe here the innovative use of handheld LIBS for the in situ analysis of rock varnish. This thinly laminated and compositionally complex veneer forms slowly over time on rock surfaces in dryland regions and is particularly abundant across the Mojave Desert climatic region of east-central California (USA). Following the depth profiling examination of a varnished clast from colluvial gravel in Death Valley in the laboratory, our in situ analysis of rock varnish and visually similar coatings on rock surfaces was undertaken in the Owens and Deep Spring valleys in two contexts, element detection/identification and microchemical mapping. Emission peaks were recognized in the LIBS spectra for the nine elements most abundant in rock varnish-Mn, Fe, Si, Al, Na, Mg, K, Ca and Ba, as well as for H, Li, C, O, Ti, V, Sr and Rb. Focused follow-up laboratory and field studies will help understand rock varnish formation and its utility for weathering and chronological studies.
RESUMO
Whether there were more extensive glaciations during the Marine Isotope Stage (MIS) 3 relative to MIS 2 across the Tian Shan in Central Asia is intensely debated because of the uncertainty in chronological data and fully understanding the driving mechanisms. To help resolve the ongoing debate, we assess the climate sensitivity of the glaciers and reconstruct the extent of glaciation during MIS 2 and 3 across the Tian Shan, using a glacier-resolving (250 × 250 m) ice sheet model asynchronously coupled with a global climate model. Our results demonstrate that the equilibrium-line altitude (ELA) over the Tian Shan decreases by â¼180 m for every 1 °C cooling under a modern precipitation regime, but precipitation reduction greatly lowers the sensitivity of the glaciers to temperature decrease (e.g., the effect of 2 °C cooling is broadly offset by a 50% decrease in precipitation). Under the modeled colder/drier-than-present climate, the model predicts an ELA depression (∆ELA) of â¼75 m (162 m) over the Tian Shan during MIS 3 interstadials (stadials). The extent of MIS 3 glaciation is much smaller than that during MIS 2 (i.e., ∆ELA = â¼726 m). The more extensive glaciation during MIS 2 is largely attributed to the enhanced summer cooling. Furthermore, through a site-to-site model-data comparison, we find that the closest match between the modeled glacier margin and the locations of the glacial deposits previously argued to be MIS 3 is generally achieved under MIS 2 climatic conditions. These results suggest more extensive glacier advances over the Tian Shan during MIS 2 than MIS 3 on a regional scale, although MIS 3 glaciation may still occur in individual glacier catchments. This pattern suggests general synchronicity with the timing of maximum Northern Hemisphere ice sheets during the last glacial, which should be further tested in a multimodel framework in the future.
RESUMO
Tectonics imparts a first-order control on the overall morphology of alluvial fan systems in extensional settings by influencing sediment flux and accommodation space, while other factors such as climate, catchment lithology, and fault footwall characteristics are secondary. Previous alluvial fan modeling studies have focused on the link between the three-dimensional development of alluvial fans and rock uplift, however, despite the potential influence of tectonics on the overall three-dimensional morphology of alluvial fans, the controlling mechanisms, as well as their relative importance, remain largely unquantified in a natural setting with a targeted source-to-sink approach. Here, we examine 45 alluvial fans and their catchments along the southern mountain front of the Aydin Range, delimited by segmented normal faults in the western Anatolia Extensional Province, to quantify the role of rock uplift. We quantify river incision rates and catchment-wide erosion rates together with a series of topographic analyses across the southern flank of the Aydin Range as a proxy for rock uplift. Our results indicate that the spatial distribution of thicker and steeper alluvial fans fit well with higher rock uplift rates along the strike of the mountain front. In contrast, a lower uplift rate is responsible for prograding alluvial fans with decreasing thickness and gradients. Also, our data shows that alluvial fan thickness compared to other alluvial fan metrics strongly associated with the pattern of the rock uplift. This study demonstrates a field-based, quantitative linkage between three-dimensional alluvial fan morphology and rock uplift which has significant implications for improving alluvial fan models and understanding how alluvial fans respond to tectonics in extensional regions.
Assuntos
RiosRESUMO
The Ancestral Puebloans occupied Chaco Canyon, in what is now the southwestern USA, for more than a millennium and harvested useful timber and fuel from the trees of distant forests as well as local woodlands, especially juniper and pinyon pine. These pinyon juniper woodland products were an essential part of the resource base from Late Archaic times (3000-100 BC) to the Bonito phase (AD 800-1140) during the great florescence of Chacoan culture. During this vast expanse of time, the availability of portions of the woodland declined. We posit, based on pollen and macrobotanical remains, that the Chaco Canyon woodlands were substantially impacted during Late Archaic to Basketmaker II times (100 BC-AD 500) when agriculture became a major means of food production and the manufacture of pottery was introduced into the canyon. By the time of the Bonito phase, the local woodlands, especially the juniper component, had been decimated by centuries of continuous extraction of a slow-growing resource. The destabilizing impact resulting from recurrent woodland harvesting likely contributed to the environmental unpredictability and difficulty in procuring essential resources suffered by the Ancestral Puebloans prior to their ultimate departure from Chaco Canyon.
Assuntos
Ecossistema , Florestas , New Mexico , ÁrvoresRESUMO
Reconstructing Quaternary regional glaciations throughout the Himalaya, Tibet, and the adjoining mountains in Central Asia is challenging due to geological biases towards limited preservation of glacial deposits and chronological uncertainties. Here, we offer several statistical and mathematical model codes in R, in excel, and in MATLAB useful to develop regional glacial chronostratigraphies, especially in areas with distinct orographically-modulated climate. A complete R code is provided to generate a regional climate map using Cluster Analysis (CA) and Principal Component Analysis (PCA). Additional R codes include reduced chi-squared, Chauvenet's criterion, radial plotter/abanico plot, finite mixture model, and Student's t-test. These methods are useful in reconstructing the timing of local and regional glacial chronologies. An excel code to calculate equilibrium-line altitudes (ELAs) and steps to reconstruct glacier hypsometry are also made available to further aid to our understanding of the extent of paleoglaciations. A MATLAB code of the linear glacier flow model is included to reconstruct paleotemperatures using the length and slope of a glacier during past advances.â¢R statistical codes can be used/modified without restrictions for other researchers.â¢Easy steps to calculate ELAs and glacier hypsometry from the same data.â¢Paleo-temperature reconstruction utilizes already developed glacial chronologies and maps.
RESUMO
A comprehensive analysis of the variable temporal and spatial responses of tropical-subtropical high-altitude glaciers to climate change is critical for successful model predictions and environmental risk assessment in the Himalayan-Tibetan orogen. High-frequency Holocene glacier chronostratigraphies are therefore reconstructed in 79 glaciated valleys across the orogen using 519 published and 16 new terrestrial cosmogenic 10Be exposure age dataset. Published 10Be ages are compiled only for moraine boulders (excluding bedrock ages). These ages are recalculated using the latest ICE-D production rate calibration database and the scaling scheme models. Outliers for the individual moraine are detected using the Chauvenet's criterion. In addition, past equilibrium-line altitudes (ELAs) are determined using the area-altitude (AA), area accumulation ratio (AAR), and toe-headwall accumulation ratio (THAR) methods for each glacier advance. The modern maximum elevations of lateral moraines (MELM) are also used to estimate modern ELAs and as an independent check on mean ELAs derived using the above three methods. These data may serve as an essential archive for future studies focusing on the cryospheric and environmental changes in the Himalayan-Tibetan orogen. A more comprehensive analysis of the published and new 10Be ages and ELA results and a list of references are presented in Saha et al. (2019, High-frequency Holocene glacier fluctuations in the Himalayan-Tibetan orogen. Quaternary Science Reviews, 220, 372-400).
RESUMO
Changes in the global atmospheric budget of platinum reportedly correspond to explosive volcanic eruptions. Using inductively coupled plasma mass spectrometry (ICP-MS) elemental analysis we examined eight widely separated stratified sites to evaluate the geographic extent of three late Holocene high magnitude volcanic events. We found characteristic Pt anomalies across the Western Hemisphere dating to the Laki, Iceland (CE 1783-1784), Kuwae, Vanuatu (CE 1452-1453), and Eldgjá, Iceland (CE 934) explosive volcanic eruptions. Pt anomalies in sediments over a broad geographic area indicate distinctive time-correlative atmospheric deposition rates of platinum-rich volcanic ash. These anomalies provide new chronostratigraphic markers for these late Holocene high magnitude volcanic eruptions, which are especially valuable in the Western Hemisphere in strata with limited chronometric control. Pt anomalies provide an important tracer for the age of these volcanic events and ultimately a new chronostratigraphic marker in archaeological, geological, palynological, and paleontological sediments.
RESUMO
Questions about how archaeological populations obtained basic food supplies are often difficult to answer. The application of specialist techniques from non-archaeological fields typically expands our knowledge base, but can be detrimental to cultural interpretations if employed incorrectly, resulting in problematic datasets and erroneous conclusions not easily caught by the recipient archaeological community. One area where this problem has failed to find resolution is Chaco Canyon, New Mexico, the center of one of the New World's most vibrant ancient civilizations. Discussions of agricultural feasibility and its impact on local population levels at Chaco Canyon have been heavily influenced by studies of soil salinity. A number of researchers have argued that salinized soils severely limited local agricultural production, instead suggesting food was imported from distant sources, specifically the Chuska Mountains. A careful reassessment of existing salinity data as measured by electrical conductivity reveals critical errors in data conversion and presentation that have misrepresented the character of the area's soil and its potential impact on crops. We combine all available electrical conductivity data, including our own, and apply multiple established conversion methods in order to estimate soil salinity values and evaluate their relationship to agricultural productivity potential. Our results show that Chacoan soils display the same salinity ranges and spatial variability as soils in other documented, productive fields in semi-arid areas. Additionally, the proposed large-scale importation of food from the Chuska Mountains region has serious social implications that have not been thoroughly explored. We consider these factors and conclude that the high cost and extreme inflexibility of such a system, in combination with material evidence for local agriculture within Chaco Canyon, make this scenario highly unlikely. Both the soil salinity and archaeological data suggest that there is no justification for precluding the practice of local agriculture within Chaco Canyon.