Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Plant Cell Physiol ; 65(7): 1197-1211, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-38635460

RESUMO

JOINTLESS (J) was isolated in tomato (Solanum lycopersicum) from mutants lacking a flower pedicel abscission zone (AZ) and encodes a MADS-box protein of the SHORT VEGETATIVE PHASE/AGAMOUS-LIKE 24 subfamily. The loss of J function also causes the return to leaf initiation in the inflorescences, indicating a pivotal role in inflorescence meristem identity. Here, we compared jointless (j) mutants in different accessions that exhibit either an indeterminate shoot growth, producing regular sympodial segments, or a determinate shoot growth, due to the reduction of sympodial segments and causal mutation of the SELF-PRUNING (SP) gene. We observed that the inflorescence phenotype of j mutants is stronger in indeterminate (SP) accessions such as Ailsa Craig (AC), than in determinate (sp) ones, such as Heinz (Hz). Moreover, RNA-seq analysis revealed that the return to vegetative fate in j mutants is accompanied by expression of SP, which supports conversion of the inflorescence meristem to sympodial shoot meristem in j inflorescences. Other markers of vegetative meristems such as APETALA2c and branching genes such as BRANCHED 1 (BRC1a/b) were differentially expressed in the inflorescences of j(AC) mutant. We also found in the indeterminate AC accession that J represses homeotic genes of B- and C-classes and that its overexpression causes an oversized leafy calyx phenotype and has a dominant negative effect on AZ formation. A model is therefore proposed where J, by repressing shoot fate and influencing reproductive organ formation, acts as a key determinant of inflorescence meristems.


Assuntos
Regulação da Expressão Gênica de Plantas , Inflorescência , Meristema , Proteínas de Plantas , Solanum lycopersicum , Solanum lycopersicum/genética , Solanum lycopersicum/crescimento & desenvolvimento , Solanum lycopersicum/metabolismo , Meristema/crescimento & desenvolvimento , Meristema/genética , Inflorescência/crescimento & desenvolvimento , Inflorescência/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Mutação , Fenótipo
2.
Plant Cell Environ ; 45(1): 206-219, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34628686

RESUMO

Metallic micronutrients are essential throughout the plant life cycle. Maintaining metal homeostasis in plant tissues requires a highly complex and finely tuned network controlling metal uptake, transport, distribution and storage. Zinc and cadmium hyperaccumulation, such as observed in the model plant Arabidopsis halleri, represents an extreme evolution of this network. Here, non-ectopic overexpression of the A. halleri ZIP6 (AhZIP6) gene, encoding a zinc and cadmium influx transporter, in Arabidopsis thaliana enabled examining the importance of zinc for flower development and reproduction. We show that AhZIP6 expression in flowers leads to male sterility resulting from anther indehiscence in a dose-dependent manner. The sterility phenotype is associated to delayed tapetum degradation and endothecium collapse, as well as increased magnesium and potassium accumulation and higher expression of the MHX gene in stamens. It is rescued by the co-expression of the zinc efflux transporter AhHMA4, linking the sterility phenotype to zinc homeostasis. Altogether, our results confirm that AhZIP6 is able to transport zinc in planta and highlight the importance of fine-tuning zinc homeostasis in reproductive organs. The study illustrates how the characterization of metal hyperaccumulation mechanisms can reveal key nodes and processes in the metal homeostasis network.


Assuntos
Arabidopsis/fisiologia , Proteínas de Transporte de Cátions/metabolismo , Flores/metabolismo , Infertilidade das Plantas/fisiologia , Proteínas de Plantas/metabolismo , Arabidopsis/genética , Proteínas de Transporte de Cátions/genética , Flores/genética , Regulação da Expressão Gênica de Plantas , Homeostase , Magnésio/metabolismo , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Potássio/metabolismo , Zinco/metabolismo
3.
Development ; 143(18): 3328-39, 2016 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-27402709

RESUMO

Lateral root (LR) emergence represents a highly coordinated process in which the plant hormone auxin plays a central role. Reactive oxygen species (ROS) have been proposed to function as important signals during auxin-regulated LR formation; however, their mode of action is poorly understood. Here, we report that Arabidopsis roots exposed to ROS show increased LR numbers due to the activation of LR pre-branch sites and LR primordia (LRP). Strikingly, ROS treatment can also restore LR formation in pCASP1:shy2-2 and aux1 lax3 mutant lines in which auxin-mediated cell wall accommodation and remodeling in cells overlying the sites of LR formation is disrupted. Specifically, ROS are deposited in the apoplast of these cells during LR emergence, following a spatiotemporal pattern that overlaps the combined expression domains of extracellular ROS donors of the RESPIRATORY BURST OXIDASE HOMOLOGS (RBOH). We also show that disrupting (or enhancing) expression of RBOH in LRP and/or overlying root tissues decelerates (or accelerates) the development and emergence of LRs. We conclude that RBOH-mediated ROS production facilitates LR outgrowth by promoting cell wall remodeling of overlying parental tissues.


Assuntos
Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/fisiologia , Arabidopsis/metabolismo , Arabidopsis/fisiologia , Raízes de Plantas/metabolismo , Raízes de Plantas/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Parede Celular/metabolismo , Parede Celular/fisiologia , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia
4.
Nucleic Acids Res ; 44(D1): D1167-71, 2016 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-26476447

RESUMO

Flowering is a hot topic in Plant Biology and important progress has been made in Arabidopsis thaliana toward unraveling the genetic networks involved. The increasing complexity and the explosion of literature however require development of new tools for information management and update. We therefore created an evolutive and interactive database of flowering time genes, named FLOR-ID (Flowering-Interactive Database), which is freely accessible at http://www.flor-id.org. The hand-curated database contains information on 306 genes and links to 1595 publications gathering the work of >4500 authors. Gene/protein functions and interactions within the flowering pathways were inferred from the analysis of related publications, included in the database and translated into interactive manually drawn snapshots.


Assuntos
Arabidopsis/genética , Bases de Dados Genéticas , Flores/genética , Regulação da Expressão Gênica de Plantas , Redes Reguladoras de Genes , Genes de Plantas , Internet
5.
BMC Plant Biol ; 16(1): 212, 2016 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-27716066

RESUMO

BACKGROUND: European Flint maize inbred lines are used as a source of adaptation to cold in most breeding programs in Northern Europe. A deep understanding of their adaptation strategy could thus provide valuable clues for further improvement, which is required in the current context of climate change. We therefore compared six inbreds and two derived Flint x Dent hybrids for their response to one-week at low temperature (10 °C day/7 or 4 °C night) during steady-state vegetative growth. RESULTS: Leaf growth was arrested during chilling treatment but recovered fast upon return to warm temperature, so that no negative effect on shoot biomass was measured. Gene expression analyses of the emerging leaf in the hybrids suggest that plants maintained a 'ready-to-grow' state during chilling since cell cycle genes were not differentially expressed in the division zone and genes coding for expansins were on the opposite up-regulated in the elongation zone. In photosynthetic tissues, a strong reduction in PSII efficiency was measured. Chilling repressed chlorophyll biosynthesis; we detected accumulation of the precursor geranylgeranyl chlorophyll a and down-regulation of GERANYLGERANYL REDUCTASE (GGR) in mature leaf tissues. Excess light energy was mostly dissipated through fluorescence and constitutive thermal dissipation processes, rather than by light-regulated thermal dissipation. Consistently, only weak clues of xanthophyll cycle activation were found. CO2 assimilation was reduced by chilling, as well as the expression levels of genes encoding phosphoenolpyruvate carboxylase (PEPC), pyruvate orthophosphate dikinase (PPDK), and the small subunit of Rubisco. Accumulation of sugars was correlated with a strong decrease of the specific leaf area (SLA). CONCLUSIONS: Altogether, our study reveals good tolerance of the photosynthetic machinery of Northern European maize to chilling and suggests that growth arrest might be their strategy for fast recovery after a mild stress.


Assuntos
Temperatura Baixa , Estresse Fisiológico/fisiologia , Zea mays/fisiologia , Adaptação Fisiológica , Melhoramento Vegetal , Folhas de Planta/genética , Folhas de Planta/fisiologia , Zea mays/genética
6.
Plant J ; 75(3): 390-402, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23581257

RESUMO

Root chicory (Cichorium intybus var. sativum) is a biennial crop, but is harvested to obtain root inulin at the end of the first growing season before flowering. However, cold temperatures may vernalize seeds or plantlets, leading to incidental early flowering, and hence understanding the molecular basis of vernalization is important. A MADS box sequence was isolated by RT-PCR and named FLC-LIKE1 (CiFL1) because of its phylogenetic positioning within the same clade as the floral repressor Arabidopsis FLOWERING LOCUS C (AtFLC). Moreover, over-expression of CiFL1 in Arabidopsis caused late flowering and prevented up-regulation of the AtFLC target FLOWERING LOCUS T by photoperiod, suggesting functional conservation between root chicory and Arabidopsis. Like AtFLC in Arabidopsis, CiFL1 was repressed during vernalization of seeds or plantlets of chicory, but repression of CiFL1 was unstable when the post-vernalization temperature was favorable to flowering and when it de-vernalized the plants. This instability of CiFL1 repression may be linked to the bienniality of root chicory compared with the annual lifecycle of Arabidopsis. However, re-activation of AtFLC was also observed in Arabidopsis when a high temperature treatment was used straight after seed vernalization, eliminating the promotive effect of cold on flowering. Cold-induced down-regulation of a MADS box floral repressor and its re-activation by high temperature thus appear to be conserved features of the vernalization and de-vernalization responses in distant species.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Cichorium intybus/fisiologia , Proteínas de Domínio MADS/genética , Proteínas de Plantas/genética , Proteínas de Arabidopsis/genética , Cichorium intybus/genética , Clonagem Molecular , Temperatura Baixa , Flores/genética , Regulação da Expressão Gênica de Plantas , Proteínas de Domínio MADS/metabolismo , Dados de Sequência Molecular , Filogenia , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Temperatura , Regulação para Cima
7.
Plant J ; 65(6): 972-9, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21205031

RESUMO

Cytokinins are involved in many aspects of plant growth and development, and physiological evidence also indicates that they have a role in floral transition. In order to integrate these phytohormones into the current knowledge of genetically defined molecular pathways to flowering, we performed exogenous treatments of adult wild type and mutant Arabidopsis plants, and analysed the expression of candidate genes. We used a hydroponic system that enables synchronous growth and flowering of Arabidopsis, and allows the precise application of chemicals to the roots for defined periods of time. We show that the application of N6-benzylaminopurine (BAP) promotes flowering of plants grown in non-inductive short days. The response to cytokinin treatment does not require FLOWERING LOCUS T (FT), but activates its paralogue TWIN SISTER OF FT (TSF), as well as FD, which encodes a partner protein of TSF, and the downstream gene SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 (SOC1). Treatment of selected mutants confirmed that TSF and SOC1 are necessary for the flowering response to BAP, whereas the activation cascade might partially act independently of FD. These experiments provide a mechanistic basis for the role of cytokinins in flowering, and demonstrate that the redundant genes FT and TSF are differently regulated by distinct floral-inducing signals.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/fisiologia , Citocininas/fisiologia , Proteína de Ligação a Fosfatidiletanolamina/genética , Reguladores de Crescimento de Plantas/fisiologia , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Sequência de Bases , Compostos de Benzil/farmacologia , Citocininas/farmacologia , DNA de Plantas/genética , Flores/efeitos dos fármacos , Flores/crescimento & desenvolvimento , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Genes de Plantas/efeitos dos fármacos , Proteínas de Domínio MADS/genética , Mutação , Reguladores de Crescimento de Plantas/farmacologia , Plantas Geneticamente Modificadas , Purinas/farmacologia , Transdução de Sinais , Fatores de Transcrição/genética , Ativação Transcricional/efeitos dos fármacos
8.
Front Plant Sci ; 13: 798502, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35211138

RESUMO

Branching is an important component determining crop yield. In tomato, the sympodial pattern of shoot and inflorescence branching is initiated at floral transition and involves the precise regulation of three very close meristems: (i) the shoot apical meristem (SAM) that undergoes the first transition to flower meristem (FM) fate, (ii) the inflorescence sympodial meristem (SIM) that emerges on its flank and remains transiently indeterminate to continue flower initiation, and (iii) the shoot sympodial meristem (SYM), which is initiated at the axil of the youngest leaf primordium and takes over shoot growth before forming itself the next inflorescence. The proper fate of each type of meristems involves the spatiotemporal regulation of FM genes, since they all eventually terminate in a flower, but also the transient repression of other fates since conversions are observed in different mutants. In this paper, we summarize the current knowledge about the genetic determinants of meristem fate in tomato and share the reflections that led us to identify sepal and flower abscission zone initiation as a critical stage of FM development that affects the branching of the inflorescence.

9.
Gigascience ; 112022 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-35084034

RESUMO

BACKGROUND: The increasing demand for local food production is fueling high interest in the development of controlled environment agriculture. In particular, LED technology brings energy-saving advantages together with the possibility of manipulating plant phenotypes through light quality control. However, optimizing light quality is required for each cultivated plant and specific purpose. FINDINGS: This article shows that the combination of LED gradient set-ups with imaging-based non-destructive plant phenotyping constitutes an interesting new screening tool with the potential to improve speed, logistics, and information output. To validate this concept, an experiment was performed to evaluate the effects of a complete range of red:blue ratios on 7 plant species: Arabidopsis thaliana, Brachypodium distachyon, Euphorbia peplus, Ocimum basilicum, Oryza sativa, Solanum lycopersicum, and Setaria viridis. Plants were exposed during 30 days to the light gradient and showed significant, but species-dependent, responses in terms of dimension, shape, and color. A time-series analysis of phenotypic descriptors highlighted growth changes but also transient responses of plant shapes to the red:blue ratio. CONCLUSION: This approach, which generated a large reusable dataset, can be adapted for addressing specific needs in crop production or fundamental questions in photobiology.


Assuntos
Arabidopsis , Brachypodium , Oryza , Setaria (Planta) , Luz
10.
Front Plant Sci ; 12: 769194, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35069625

RESUMO

The proper timing of flowering, which is key to maximize reproductive success and yield, relies in many plant species on the coordination between environmental cues and endogenous developmental programs. The perception of changes in day length is one of the most reliable cues of seasonal change, and this involves the interplay between the sensing of light signals and the circadian clock. Here, we describe a Brachypodium distachyon mutant allele of the evening complex protein EARLY FLOWERING 3 (ELF3). We show that the elf3 mutant flowers more rapidly than wild type plants in short days as well as under longer photoperiods but, in very long (20 h) days, flowering is equally rapid in elf3 and wild type. Furthermore, flowering in the elf3 mutant is still sensitive to vernalization, but not to ambient temperature changes. Molecular analyses revealed that the expression of a short-day marker gene is suppressed in elf3 grown in short days, and the expression patterns of clock genes and flowering time regulators are altered. We also explored the mechanisms of photoperiodic perception in temperate grasses by exposing B. distachyon plants grown under a 12 h photoperiod to a daily night break consisting of a mixture of red and far-red light. We showed that 2 h breaks are sufficient to accelerate flowering in B. distachyon under non-inductive photoperiods and that this acceleration of flowering is mediated by red light. Finally, we discuss advances and perspectives for research on the perception of photoperiod in temperate grasses.

11.
Plant J ; 59(6): 962-73, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19473326

RESUMO

Molecular genetic analyses in Arabidopsis disclosed a genetic pathway whereby flowering is induced by the photoperiod. This cascade is examined here within the time course of floral transition in the long-day (LD) plant Sinapis alba induced by a single photoperiodic cycle. In addition to previously available sequences, the cloning of CONSTANS (SaCO) and FLOWERING LOCUS T (SaFT) homologues allowed expression analyses to be performed to follow the flowering process step by step. A diurnal rhythm in SaCO expression in the leaves was observed and transcripts of SaFT were detected when light was given in phase with SaCO kinetics only. This occurred when day length was extended or when a short day was shifted towards a 'photophile phase'. The steady-state level of SaFT transcripts in the various physiological situations examined was found to correlate like a rheostat with floral induction strength. Kinetics of SaFT activation were also consistent with previous estimations of translocation of florigen out of leaves, which could actually occur after the inductive cycle. In response to one 22-h LD, initiation of floral meristems by the shoot apical meristem (SAM) started about 2 days after activation of SaFT and was marked by expression of APETALA1 (SaAP1). Meanwhile, LEAFY (SaLFY) was first up-regulated in leaf primordia and in the SAM. FRUITFULL (SaFUL) was later activated in the whole SAM but excluded from floral meristems. These patterns are integrated with previous observations concerning upregulation of SUPPRESSOR OF OVEREXPRESSION OF CO1 (SaSOC1) to provide a temporal and spatial map of floral transition in Sinapis.


Assuntos
Flores/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Fotoperíodo , Sinapis/genética , Sequência de Aminoácidos , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Clonagem Molecular , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Flores/genética , Regulação da Expressão Gênica no Desenvolvimento , Genes de Plantas , Proteínas de Domínio MADS/genética , Proteínas de Domínio MADS/metabolismo , Dados de Sequência Molecular , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/metabolismo , Alinhamento de Sequência , Sinapis/crescimento & desenvolvimento , Sinapis/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
12.
J Plant Physiol ; 254: 153272, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32980639

RESUMO

Root chicory (Cichorium intybus var. sativum) is a biennial plant that requires vernalization for flowering initiation. However, we previously showed that heat can induce root chicory flowering independently of vernalization. To deepen our understanding of the temperature control of flowering in this species, we investigated the impact of heat, vernalization and their interaction on flowering induction and reproductive development. Heat increased the flowering percentage of non-vernalized plants by 25% but decreased that of vernalized plants by 65%. After bolting, heat negatively affected inflorescence development, decreasing the proportion of sessile capitula on the floral stem by 40% and the floral stem dry weight by 42% compared to control conditions, although it did not affect the number of flowers per capitulum. Heat also decreased flower fertility: pollen production, pollen viability and stigma receptivity were respectively 25%, 3% and 82% lower in heat-treated plants than in untreated control plants. To investigate the genetic control of flowering by temperature in root chicory, we studied the expression of the FLC-LIKE1 (CiFL1) gene in response to heat; CiFL1 was previously shown to be repressed by vernalization in chicory and to repress flowering when over-expressed in Arabidopsis. Heat treatment increased CiFL1 expression, as well as the percentage of bolting and flowering shoot apices. Heat thus has a dual impact on flowering initiation in root chicory since it appears to both induce flowering and counteract vernalization. However, after floral transition, heat has a primarily negative impact on root chicory reproduction.


Assuntos
Cichorium intybus/crescimento & desenvolvimento , Flores/crescimento & desenvolvimento , Cichorium intybus/fisiologia , Temperatura Baixa , Fertilidade , Temperatura Alta
13.
Trends Plant Sci ; 24(5): 431-442, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30853243

RESUMO

TERMINAL FLOWER1 (TFL1) was named from knockout Arabidopsis thaliana mutants in which the inflorescence abnormally terminates into a flower. In wild type plants, the expression of TFL1 in the center of the inflorescence meristem represses the flower meristem identity genes LEAFY (LFY) and APETALA1 (AP1) to maintain indeterminacy. LFY and AP1 are activated by flowering signals that antagonize TFL1. Its characterization in numerous species revealed that the TFL1-mediated regulation of meristem fate has broader impacts on plant development than originally depicted in A. thaliana. By blocking floral transition, TFL1 genes participate in the control of juvenility, shoot growth pattern, inflorescence architecture, and the establishment of life history strategies. Here, we contextualize the role of the TFL1-mediated protection of meristem indeterminacy throughout plant development.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Flores , Regulação da Expressão Gênica de Plantas , Meristema , Mutação , Proteínas de Plantas
14.
New Phytol ; 178(4): 755-765, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18346112

RESUMO

* Of the Brassicaceae, Sinapis alba has been intensively studied as a physiological model of induction of flowering by a single long day (LD), while molecular-genetic analyses of Arabidopsis thaliana have disclosed complex interactions between pathways controlling flowering in response to different environmental cues, such as photoperiod and vernalization. The vernalization process in S. alba was therefore analysed here. * The coding sequence of S. alba SaFLC, which is orthologous to the A. thaliana floral repressor FLOWERING LOCUS C, was isolated and the transcript levels quantified in different conditions. * Two-week-old seedlings grown in noninductive short days (SDs) were vernalized for 1-6 wk. Down-regulation of SaFLC was already marked after 1 wk of cold but 2 wk was needed for a significant acceleration of flowering. Flower buds were initiated during vernalization. When vernalization was stopped after 1 wk, repression of SaFLC was not stable but a significant increase in plant responsiveness to 16-h LDs was observed when LDs followed immediately after the cold treatment. * These results suggest that vernalization does not only work when plants experience long exposure to cold during the winter: shorter cold periods might stimulate flowering of LD plants if they occur when photoperiod is increasing, such as in spring.


Assuntos
Temperatura Baixa , Flores/fisiologia , Fotoperíodo , Proteínas de Plantas/metabolismo , Proteínas Repressoras/metabolismo , Sinapis/fisiologia , Sequência de Aminoácidos , Southern Blotting , DNA Complementar/isolamento & purificação , DNA de Plantas/metabolismo , Regulação para Baixo , Flores/genética , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Dados de Sequência Molecular , Proteínas de Plantas/química , Proteínas de Plantas/genética , Sinapis/genética , Fatores de Tempo
15.
Curr Biol ; 28(19): 3165-3173.e5, 2018 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-30270188

RESUMO

Efficient soil exploration by roots represents an important target for crop improvement and food security [1, 2]. Lateral root (LR) formation is a key trait for optimizing soil foraging for crucial resources such as water and nutrients. Here, we report an adaptive response termed xerobranching, exhibited by cereal roots, that represses branching when root tips are not in contact with wet soil. Non-invasive X-ray microCT imaging revealed that cereal roots rapidly repress LR formation as they enter an air space within a soil profile and are no longer in contact with water. Transcript profiling of cereal root tips revealed that transient water deficit triggers the abscisic acid (ABA) response pathway. In agreement with this, exogenous ABA treatment can mimic repression of LR formation under transient water deficit. Genetic analysis in Arabidopsis revealed that ABA repression of LR formation requires the PYR/PYL/RCAR-dependent signaling pathway. Our findings suggest that ABA acts as the key signal regulating xerobranching. We conclude that this new ABA-dependent adaptive mechanism allows roots to rapidly respond to changes in water availability in their local micro-environment and to use internal resources efficiently.


Assuntos
Ácido Abscísico/metabolismo , Grão Comestível/metabolismo , Raízes de Plantas/metabolismo , Adaptação Psicológica/fisiologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Grão Comestível/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas/genética , Meristema/metabolismo , Organogênese Vegetal , Reguladores de Crescimento de Plantas/metabolismo , Plantas Geneticamente Modificadas , Transdução de Sinais , Fatores de Transcrição/metabolismo , Água/metabolismo
16.
Front Plant Sci ; 8: 447, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28421089

RESUMO

Root system analysis is a complex task, often performed with fully automated image analysis pipelines. However, the outcome is rarely verified by ground-truth data, which might lead to underestimated biases. We have used a root model, ArchiSimple, to create a large and diverse library of ground-truth root system images (10,000). For each image, three levels of noise were created. This library was used to evaluate the accuracy and usefulness of several image descriptors classically used in root image analysis softwares. Our analysis highlighted that the accuracy of the different traits is strongly dependent on the quality of the images and the type, size, and complexity of the root systems analyzed. Our study also demonstrated that machine learning algorithms can be trained on a synthetic library to improve the estimation of several root system traits. Overall, our analysis is a call to caution when using automatic root image analysis tools. If a thorough calibration is not performed on the dataset of interest, unexpected errors might arise, especially for large and complex root images. To facilitate such calibration, both the image library and the different codes used in the study have been made available to the community.

17.
Sci Rep ; 7(1): 4402, 2017 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-28667273

RESUMO

Abscission is the mechanism by which plants disconnect unfertilized flowers, ripe fruits, senescent or diseased organs from the plant. In tomato, pedicel abscission is an important agronomic factor that controls yield and post-harvest fruit quality. Two non-allelic mutations, jointless (j) and jointless-2 (j-2), controlling pedicel abscission zone formation have been documented but only j-2 has been extensively used in breeding. J was shown to encode a MADS-box protein. Using a combination of physical mapping and gene expression analysis we identified a positional candidate, Solyc12g038510, associated with j-2 phenotype. Targeted knockout of Solyc12g038510, using CRISPR/Cas9 system, validated our hypothesis. Solyc12g038510 encodes the MADS-box protein SlMBP21. Molecular analysis of j-2 natural variation revealed two independent loss-of-function mutants. The first results of an insertion of a Rider retrotransposable element. The second results of a stop codon mutation that leads to a truncated protein form. To bring new insights into the role of J and J-2 in abscission zone formation, we phenotyped the single and the double mutants and the engineered alleles. We showed that J is epistatic to J-2 and that the branched inflorescences and the leafy sepals observed in accessions harboring j-2 alleles are likely the consequences of linkage drags.


Assuntos
Mutação com Perda de Função , Proteínas de Domínio MADS/genética , Mutação , Fenótipo , Proteínas de Plantas/genética , Solanum lycopersicum/genética , Sequência de Bases , Epistasia Genética , Loci Gênicos , Proteínas de Domínio MADS/química , Mutagênese Insercional , Penetrância , Proteínas de Plantas/química , Retroelementos
18.
Sci Rep ; 6: 29042, 2016 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-27352932

RESUMO

Molecular data concerning the involvement of roots in the genetic pathways regulating floral transition are lacking. In this study, we performed global analyses of the root transcriptome in Arabidopsis in order to identify flowering time genes that are expressed in the roots and genes that are differentially expressed in the roots during the induction of flowering. Data mining of public microarray experiments uncovered that about 200 genes whose mutations are reported to alter flowering time are expressed in the roots (i.e. were detected in more than 50% of the microarrays). However, only a few flowering integrator genes passed the analysis cutoff. Comparison of root transcriptome in short days and during synchronized induction of flowering by a single 22-h long day revealed that 595 genes were differentially expressed. Enrichment analyses of differentially expressed genes in root tissues, gene ontology categories, and cis-regulatory elements converged towards sugar signaling. We concluded that roots are integrated in systemic signaling, whereby carbon supply coordinates growth at the whole plant level during the induction of flowering. This coordination could involve the root circadian clock and cytokinin biosynthesis as a feed forward loop towards the shoot.


Assuntos
Proteínas de Arabidopsis/biossíntese , Arabidopsis/genética , Flores/crescimento & desenvolvimento , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Redes Reguladoras de Genes , Genes de Plantas , Raízes de Plantas/fisiologia , Arabidopsis/anatomia & histologia , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Mineração de Dados , Bases de Dados Genéticas , Conjuntos de Dados como Assunto , Metabolismo Energético/genética , Estudos de Associação Genética , Mutação , Fotoperíodo , Folhas de Planta/metabolismo , Raízes de Plantas/metabolismo , Regiões Promotoras Genéticas/genética , RNA de Plantas/biossíntese , RNA de Plantas/genética , Elementos Reguladores de Transcrição , Análise Serial de Tecidos , Transcriptoma
19.
Plant Biotechnol J ; 3(1): 3-16, 2005 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17168895

RESUMO

Physiological studies on flowering time control have shown that plants integrate several environmental signals. Predictable factors, such as day length and vernalization, are regarded as 'primary', but clearly interfere with, or can even be substituted by, less predictable factors. All plant parts participate in the sensing of these interacting factors. In the case of floral induction by photoperiod, long-distance signalling is known to occur between the leaves and the shoot apical meristem (SAM) via the phloem. In the long-day plant, Sinapis alba, this long-distance signalling has also been shown to involve the root system and to include sucrose, nitrate, glutamine and cytokinins, but not gibberellins. In Arabidopsis thaliana, a number of genetic pathways controlling flowering time have been identified. Models now extend beyond 'primary' controlling factors and show an ever-increasing number of cross-talks between pathways triggered or influenced by various environmental factors and hormones (mainly gibberellins). Most of the genes involved are preferentially expressed in meristems (the SAM and the root tip), but, surprisingly, only a few are expressed preferentially or exclusively in leaves. However, long-distance signalling from leaves to SAM has been shown to occur in Arabidopsis during the induction of flowering by long days. In this review, we propose a model integrating physiological data and genes activated by the photoperiodic pathway controlling flowering time in early-flowering accessions of Arabidopsis. This model involves metabolites, hormones and gene products interacting as long- or short-distance signalling molecules.

20.
Plant Signal Behav ; 10(3): e990799, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25648822

RESUMO

Vernalization establishes a memory of winter that must be maintained for weeks or months in order to promote flowering the following spring. The stability of the vernalized state varies among plant species and depends on the duration of cold exposure. In Arabidopsis thaliana, winter leads to epigenetic silencing of the floral repressor gene FLOWERING LOCUS C (FLC) and the duration of cold is measured through the dynamics of chromatin modifications during and after cold. The growing conditions encountered post-vernalization are thus critical for the maintenance of the vernalized state. We reported that high temperature leads to devernalization and, consistently, to FLC reactivation in Arabidopsis seedlings. Here we show that the repressive epigenetic mark H3K27me3 decreases at the FLC locus when vernalized seedlings are grown at 30°C, unless they were first exposed to a stabilizing period at 20°C. Ambient temperature thus controls the epigenetic memory of winter.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Epigênese Genética , Flores/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Temperatura Alta , Proteínas de Domínio MADS/genética , Estações do Ano , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/metabolismo , Temperatura Baixa , Genes de Plantas , Proteínas de Domínio MADS/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA