Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Nephrol Dial Transplant ; 39(2): 215-221, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-37558390

RESUMO

BACKGROUND: Albumin, as the most abundant plasma protein, represents a target structure for both drug and physicochemical therapeutic approaches to eliminate uraemic toxins more efficiently. Potentially, this approach could reduce mortality of haemodialysis patients. However, little is known about albumin functional properties in these patients and its alteration by haemodialysis treatment. METHODS: The binding and detoxification efficiency of albumin were assessed by electron paramagnetic resonance spectroscopy using a spin-labelled fatty acid. Binding efficiency (BE) reflects strength and amount of bound fatty acids under certain ethanol concentration. Detoxification efficiency (DTE) reflects the molecular flexibility of the patient's albumin molecule, thus the ability to change the conformation depending on ethanol concentration. Percentage of BE and DTE are depicted in relation to healthy individuals (100%). RESULTS: Fifty-eight patients (59% male, median age 68 years, median time on haemodialysis 32 months) were included in the study. Before haemodialysis treatment, albumin binding and detoxification efficiency were substantially below healthy individuals [median BE 52% (interquartile range, IQR, 45%-59%); median DTE 38% (IQR 32-49%)]. After haemodialysis treatment, median BE and DTE significantly decreased [BE 28% (IQR 20-41%); DTE 11% (IQR 7%-27%; P < .001)]. BE and DTE decline after haemodialysis was not dependent on age, sex or treatment modalities, but was to a certain extent on the level of non-esterified fatty acids. CONCLUSION: Albumin binding and detoxification efficiency of fatty acids in maintenance haemodialysis patients were substantially below those in healthy individuals and even declined after dialysis treatment. These findings might be helpful when considering new therapeutic approaches in maintenance haemodialysis patients.


Assuntos
Proteínas Sanguíneas , Diálise Renal , Humanos , Masculino , Idoso , Feminino , Diálise Renal/efeitos adversos , Diálise Renal/métodos , Albuminas , Ácidos Graxos , Etanol
2.
J Hepatol ; 79(1): 79-92, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37268222

RESUMO

BACKGROUND & AIMS: Acute-on-chronic liver failure (ACLF) is characterized by severe systemic inflammation, multi-organ failure and high mortality rates. Its treatment is an urgent unmet need. DIALIVE is a novel liver dialysis device that aims to exchange dysfunctional albumin and remove damage- and pathogen-associated molecular patterns. This first-in-man randomized-controlled trial was performed with the primary aim of assessing the safety of DIALIVE in patients with ACLF, with secondary aims of evaluating its clinical effects, device performance and effect on pathophysiologically relevant biomarkers. METHODS: Thirty-two patients with alcohol-related ACLF were included. Patients were treated with DIALIVE for up to 5 days and end points were assessed at Day 10. Safety was assessed in all patients (n = 32). The secondary aims were assessed in a pre-specified subgroup that had at least three treatment sessions with DIALIVE (n = 30). RESULTS: There were no significant differences in 28-day mortality or occurrence of serious adverse events between the groups. Significant reduction in the severity of endotoxemia and improvement in albumin function was observed in the DIALIVE group, which translated into a significant reduction in the CLIF-C (Chronic Liver Failure consortium) organ failure (p = 0.018) and CLIF-C ACLF scores (p = 0.042) at Day 10. Time to resolution of ACLF was significantly faster in DIALIVE group (p = 0.036). Biomarkers of systemic inflammation such as IL-8 (p = 0.006), cell death [cytokeratin-18: M30 (p = 0.005) and M65 (p = 0.029)], endothelial function [asymmetric dimethylarginine (p = 0.002)] and, ligands for Toll-like receptor 4 (p = 0.030) and inflammasome (p = 0.002) improved significantly in the DIALIVE group. CONCLUSIONS: These data indicate that DIALIVE appears to be safe and impacts positively on prognostic scores and pathophysiologically relevant biomarkers in patients with ACLF. Larger, adequately powered studies are warranted to further confirm its safety and efficacy. IMPACT AND IMPLICATIONS: This is the first-in-man clinical trial which tested DIALIVE, a novel liver dialysis device for the treatment of cirrhosis and acute-on-chronic liver failure, a condition associated with severe inflammation, organ failures and a high risk of death. The study met the primary endpoint, confirming the safety of the DIALIVE system. Additionally, DIALIVE reduced inflammation and improved clinical parameters. However, it did not reduce mortality in this small study and further larger clinical trials are required to re-confirm its safety and to evaluate efficacy. CLINICAL TRIAL NUMBER: NCT03065699.


Assuntos
Insuficiência Hepática Crônica Agudizada , Doença Hepática Terminal , Humanos , Insuficiência Hepática Crônica Agudizada/terapia , Insuficiência Hepática Crônica Agudizada/complicações , Padrão de Cuidado , Prognóstico , Diálise Renal/efeitos adversos , Cirrose Hepática/complicações , Biomarcadores , Inflamação/complicações
3.
BMC Nephrol ; 24(1): 273, 2023 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-37723426

RESUMO

BACKGROUND AND AIM: Maintenance haemodialysis patients have increased morbidity and mortality which is mainly driven by an elevated inflammation level due to the uraemic milieu. A major part of this increased inflammation level is the degree of oxidative stress which can be assessed by albumin redox state (ARS). Aim of this study was to evaluate how the ARS is affected by a haemodialysis treatment and different dialyzer properties. METHODS: ARS was determined before and after haemodialysis treatment by fractionating it into reduced human mercaptalbumin (HMA), reversibly oxidized human non-mercaptalbumin 1 (HNA-1), and irreversibly oxidized human non-mercaptalbumin 2 (HNA-2) by high-performance liquid chromatography. In healthy individuals, albumin circulates in the following proportions: HMA 70-80%, HNA-1 20-30% and HNA-2 2-5%. High flux (FX 100 [Fresenius Medical Care], BG 1.8 [Toray], Xevonta Hi 18 [B. Braun], CTA-2000 [Kawasumi]) and low flux FX10 [Fresenius Medical Care] dialyzers were used. RESULTS: 58 patients (59% male, median age 68 years, median time on haemodialysis 32 month) were included in the study. Before haemodialysis treatment, HMA (median 55.9%, IQR 50.1-61.2%) was substantially lower than in healthy individuals. Accordingly, oxidized albumin fractions were above the level of healthy individuals (median HNA-1 38.5%, IQR 33.3-43.2%; median HNA-2 5.8%, IQR 5.1-6.7%). Before haemodialysis treatment HMA was significantly higher in patients usually treated with high flux membranes (p < 0.01). After haemodialysis treatment there was a significant increase of HMA and a decrease of HNA-1 and HNA-2 (p < 0.01). These effects were more pronounced in patients treated with high flux dialyzers (p < 0.01). There were no differences of ARS alteration with regard to the dialyzer´s sterilization mode or the presence of diabetes. CONCLUSION: The study confirms that the ARS is positively altered by haemodialysis and shows for the first time that this effect depends on dialyzer properties.


Assuntos
Nível de Saúde , Inflamação , Humanos , Masculino , Idoso , Feminino , Oxirredução , Estresse Oxidativo , Diálise Renal
4.
Int J Mol Sci ; 24(22)2023 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-38003446

RESUMO

Oxidative stress is involved in the development, progression, and complications of diabetes mellitus (DM). Oxidative modification of human serum albumin's cysteine-34 is a marker for oxidative stress-related pathological conditions. We aimed to evaluate the redox state of albumin in patients with DM to investigate possible correlations with age, diabetes duration, and disease control status. Plasma aliquots were collected from 52 participants (26 type 1 and 26 type 2 DM). Patients were divided into two groups according to their glycated hemoglobin levels less than or equal to and greater than 58 mmol/L. Albumin redox state was assessed with high-performance liquid chromatography by fractionating it into human mercaptalbumin (HMA) and human nonmercaptalbumin 1 and 2 (HNA1 and HNA2). Albumin redox fractions were differently related to the age of study participants. In age-matched T1DM and T2DM groups, the albumin redox state was essentially the same. Irreversibly oxidized HNA2 was positively correlated with diabetes duration, especially in the T1DM group. HNA was increased in people with an increased HbA1c (>58 mmol/mol). Our results support the hypothesis that oxidative stress plays a crucial role in DM pathogenesis and emphasize the importance of diabetes control on systemic oxidative burden.


Assuntos
Diabetes Mellitus Tipo 1 , Diabetes Mellitus Tipo 2 , Humanos , Hemoglobinas Glicadas , Albumina Sérica Humana/metabolismo , Soro/metabolismo , Estresse Oxidativo , Oxirredução
5.
Int J Mol Sci ; 24(19)2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37834098

RESUMO

Antimicrobial peptides (AMPs) can kill bacteria by disrupting their cytoplasmic membrane, which reduces the tendency of antibacterial resistance compared to conventional antibiotics. Their possible toxicity to human cells, however, limits their applicability. The combination of magnetically controlled drug delivery and supramolecular engineering can help to reduce the dosage of AMPs, control the delivery, and improve their cytocompatibility. Lasioglossin III (LL) is a natural AMP form bee venom that is highly antimicrobial. Here, superparamagnetic iron oxide nanoparticles (IONs) with a supramolecular ureido-pyrimidinone (UPy) coating were investigated as a drug carrier for LL for a controlled delivery to a specific target. Binding to IONs can improve the antimicrobial activity of the peptide. Different transmission electron microscopy (TEM) techniques showed that the particles have a crystalline iron oxide core with a UPy shell and UPy fibers. Cytocompatibility and internalization experiments were carried out with two different cell types, phagocytic and nonphagocytic cells. The drug carrier system showed good cytocompatibility (>70%) with human kidney cells (HK-2) and concentration-dependent toxicity to macrophagic cells (THP-1). The particles were internalized by both cell types, giving them the potential for effective delivery of AMPs into mammalian cells. By self-assembly, the UPy-coated nanoparticles can bind UPy-functionalized LL (UPy-LL) highly efficiently (99%), leading to a drug loading of 0.68 g g-1. The binding of UPy-LL on the supramolecular nanoparticle system increased its antimicrobial activity against E. coli (MIC 3.53 µM to 1.77 µM) and improved its cytocompatible dosage for HK-2 cells from 5.40 µM to 10.6 µM. The system showed higher cytotoxicity (5.4 µM) to the macrophages. The high drug loading, efficient binding, enhanced antimicrobial behavior, and reduced cytotoxicity makes ION@UPy-NH2 an interesting drug carrier for AMPs. The combination with superparamagnetic IONs allows potential magnetically controlled drug delivery and reduced drug amount of the system to address intracellular infections or improve cancer treatment.


Assuntos
Anti-Infecciosos , Peptídeos Antimicrobianos , Animais , Humanos , Pirimidinonas/química , Escherichia coli , Portadores de Fármacos , Anti-Infecciosos/farmacologia , Nanopartículas Magnéticas de Óxido de Ferro , Íons , Mamíferos
6.
Int J Mol Sci ; 23(24)2022 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-36555448

RESUMO

Like in many other pathologies, oxidative stress is involved in the development of neurodegenerative disorders. Human serum albumin (HSA) is the main protein in different body fluids including cerebrospinal fluid (CSF). By its redox state in terms of cysteine-34, albumin serves as marker for oxidative burden. We aimed to evaluate the redox state of HSA in patients with multiple sclerosis in serum and CSF in comparison to controls to identify possible correlations with disease activity and severity. Samples were stored at -70 °C until analysis by HPLC for the determination of albumin redox state in terms of the fractions of human mercaptalbumin (HMA), human nonmercaptalbumin1 (HNA1), and human nonmercaptalbumin2 (HNA2). Albumin in CSF showed significantly higher fractions of the reduced form HMA and decreased HNA1 and HNA2. There was no difference between albumin redox states in serum of patients and controls. In CSF of patients HNA2 showed a trend to higher fractions compared to controls. Albumin redox state in serum was associated with physical disability in remission while albumin redox state in CSF was related to disease activity. Thus, albumin redox state in serum and CSF of patients in relation to disease condition merits further investigation.


Assuntos
Esclerose Múltipla , Albumina Sérica Humana , Humanos , Albumina Sérica Humana/metabolismo , Projetos Piloto , Soro/metabolismo , Oxirredução
7.
Int Ophthalmol ; 40(4): 999-1006, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31925660

RESUMO

PURPOSE: Numerous studies suggest that reactive oxygen species play a crucial role in the development of glaucoma. Since glaucoma patients exhibit posterior vitreous detachment earlier than controls, it has been suggested that reactive oxygen species-increased in glaucoma-also affect the vitreous. In the present study we evaluated the influence of open-angle glaucoma oxidative stress on the redox state of vitreous albumin. METHODS: Albumin redox states of the vitreous and plasma were evaluated in 22 subjects-11 open-angle glaucoma patients and 11 controls-matched for age, gender, and vitreous state. According to the redox state of cysteine-34, albumin can be separated into: human mercaptalbumin (the thiol form), human nonmercaptalbumin1 (a reversible modification due to mild oxidation), and human nonmercaptalbumin2 (an irreversible modification due to severe oxidation). RESULTS: Albumin of both, the open-angle glaucoma group and the control group, was more oxidized in the vitreous compared to plasma. Furthermore, significantly higher human nonmercaptalbumin1 fractions were found in the vitreous of open-angle glaucoma patients compared to controls. No significant differences were found in the plasma albumin fractions between the groups. CONCLUSION: Our results support the hypothesis that oxidative stress plays a crucial role in open-angle glaucoma and that reactive oxygen species in glaucomatous eyes may also affect the vitreous.


Assuntos
Albuminas/metabolismo , Glaucoma de Ângulo Aberto/metabolismo , Pressão Intraocular/fisiologia , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Corpo Vítreo/metabolismo , Idoso , Feminino , Glaucoma de Ângulo Aberto/fisiopatologia , Humanos , Masculino , Oxirredução , Projetos Piloto
8.
Biochim Biophys Acta ; 1841(4): 588-94, 2014 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-24440819

RESUMO

Adipose triglyceride lipase (ATGL) is required for efficient mobilization of triglyceride (TG) stores in adipose tissue and non-adipose tissues. Therefore, ATGL strongly determines the availability of fatty acids for metabolic reactions. ATGL activity is regulated by a complex network of lipolytic and anti-lipolytic hormones. These signals control enzyme expression and the interaction of ATGL with the regulatory proteins CGI-58 and G0S2. Up to date, it was unknown whether ATGL activity is also controlled by lipid intermediates generated during lipolysis. Here we show that ATGL activity is inhibited by long-chain acyl-CoAs in a non-competitive manner, similar as previously shown for hormone-sensitive lipase (HSL), the rate-limiting enzyme for diglyceride breakdown in adipose tissue. ATGL activity is only marginally inhibited by medium-chain acyl-CoAs, diglycerides, monoglycerides, and free fatty acids. Immunoprecipitation assays revealed that acyl-CoAs do not disrupt the protein-protein interaction of ATGL and its co-activator CGI-58. Furthermore, inhibition of ATGL is independent of the presence of CGI-58 and occurs directly at the N-terminal patatin-like phospholipase domain of the enzyme. In conclusion, our results suggest that inhibition of the major lipolytic enzymes ATGL and HSL by long-chain acyl-CoAs could represent an effective feedback mechanism controlling lipolysis and protecting cells from lipotoxic concentrations of fatty acids and fatty acid-derived lipid metabolites.


Assuntos
Acil Coenzima A/metabolismo , Tecido Adiposo/enzimologia , Lipase/metabolismo , Lipólise/genética , 1-Acilglicerol-3-Fosfato O-Aciltransferase/metabolismo , Acil Coenzima A/genética , Proteínas de Ciclo Celular/metabolismo , Ácidos Graxos/metabolismo , Humanos , Lipase/antagonistas & inibidores , Lipase/genética , Metabolismo dos Lipídeos , Esterol Esterase/antagonistas & inibidores , Esterol Esterase/genética , Esterol Esterase/metabolismo , Triglicerídeos/metabolismo
9.
Basic Clin Pharmacol Toxicol ; 134(3): 375-384, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38093476

RESUMO

Oxidative albumin modification and impaired albumin binding function have been described both in chronic liver failure and for therapeutic albumin solutions. The aim of the present study was to evaluate the effect of albumin infusion on redox state and binding function of circulating albumin. We studied 20 patients with cirrhosis who routinely received albumin infusions for prevention of post-paracentesis circulatory dysfunction or treatment of hepatorenal syndrome. We measured albumin fractions by redox state of cysteine-34 and albumin binding properties using dansylsarcosine as site II ligand. Therapeutic albumin solutions showed high contents of human nonmercaptalbumin-1 and human nonmercaptalbumin-2, exceeding the respective values in our patients with decompensated cirrhosis. An initial protocol for the first nine patients sampled at baseline, 24 h and 48 h after albumin infusion revealed no significant changes of oxidized albumin species or albumin binding properties. However, a modified protocol for the remaining 11 patients sampled at baseline, <1 h after and 24 h after albumin infusion revealed short-lived changes of oxidized albumin species while no changes in albumin binding properties were observed. In conclusion, therapeutic albumin infusion transiently changed albumin redox state but did not improve binding function of circulating albumin in chronic liver failure.


Assuntos
Doença Hepática Terminal , Humanos , Doença Hepática Terminal/tratamento farmacológico , Albumina Sérica , Cirrose Hepática/tratamento farmacológico , Cirrose Hepática/metabolismo , Estresse Oxidativo , Oxirredução
10.
J Biol Chem ; 287(14): 11164-73, 2012 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-22311986

RESUMO

Synthesis, storage, and turnover of triacylglycerols (TAGs) in adipocytes are critical cellular processes to maintain lipid and energy homeostasis in mammals. TAGs are stored in metabolically highly dynamic lipid droplets (LDs), which are believed to undergo fragmentation and fusion under lipolytic and lipogenic conditions, respectively. Time lapse fluorescence microscopy showed that stimulation of lipolysis in 3T3-L1 adipocytes causes progressive shrinkage and almost complete degradation of all cellular LDs but without any detectable fragmentation into micro-LDs (mLDs). However, mLDs were rapidly formed after induction of lipolysis in the absence of BSA in the culture medium that acts as a fatty acid scavenger. Moreover, mLD formation was blocked by the acyl-CoA synthetase inhibitor triacsin C, implicating that mLDs are synthesized de novo in response to cellular fatty acid overload. Using label-free coherent anti-Stokes Raman scattering microscopy, we demonstrate that LDs grow by transfer of lipids from one organelle to another. Notably, this lipid transfer between closely associated LDs is not a rapid and spontaneous process but rather occurs over several h and does not appear to require physical interaction over large LD surface areas. These data indicate that LD growth is a highly regulated process leading to the heterogeneous LD size distribution within and between individual cells. Our findings suggest that lipolysis and lipogenesis occur in parallel in a cell to prevent cellular fatty acid overflow. Furthermore, we propose that formation of large LDs requires a yet uncharacterized protein machinery mediating LD interaction and lipid transfer.


Assuntos
Adipócitos/metabolismo , Lipídeos/química , Lipólise , Células 3T3-L1 , Adipócitos/citologia , Animais , Sobrevivência Celular , Humanos , Camundongos , Imagem Molecular , Células-Tronco/citologia , Propriedades de Superfície , Fatores de Tempo
11.
Biochim Biophys Acta Gen Subj ; 1867(9): 130427, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37454915

RESUMO

BACKGROUND & AIMS: Transport functions of albumin are of clinical and pharmacological interest and are determined by albumin's properties like posttranslational modifications or bound ligands. Both are affected in pathological conditions and in therapeutic grade albumin solutions. The term effective albumin concentration was introduced as a measure of functionally intact albumin. Our aim was to evaluate the impact of ligands and modifications with different approaches as a measure of effective albumin. APPROACH & RESULTS: We used a spin labelled fatty acid and dansylsarcosine to characterize binding properties of albumin i) prepared from plasma of patients and healthy control donors, ii) measured directly out of plasma, iii) research grade albumin, iv) in vitro modified albumin, and v) therapeutic infusion solutions before and after removal of stabilizers. Bilirubin is the main determinant for binding function in patients' albumin. In in vitro prepared albumin bound fatty acids correlated with impaired binding. Human nonmercaptalbumin1, not human nonmercaptalbumin2, showed reduced binding properties. Binding and transport function of therapeutic albumin was severely impaired and restored by filtration. Glycation of research grade albumin had no effect on the binding of dansylsarcosine and only a minor effect on fatty acid binding. CONCLUSIONS: Our results suggest that effective albumin -in terms of binding properties- is primarily determined by bound ligands and only to a minor extent by posttranslational modifications. Characterizing albumin directly from plasma better reflects the physiological situation whereas in the case of therapeutic grade albumin stabilizers should be removed to make its binding properties accessible.


Assuntos
Albuminas , Ácidos Graxos , Humanos , Ligantes , Albuminas/metabolismo , Compostos de Dansil/química , Compostos de Dansil/metabolismo
12.
Pharmaceutics ; 15(8)2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37631325

RESUMO

Metformin is the most commonly prescribed glucose-lowering drug for the treatment of type 2 diabetes. The aim of this study was to investigate whether metformin is capable of impeding the oxidation of LDL, a crucial step in the development of endothelial dysfunction and atherosclerosis. LDL was oxidized by addition of CuCl2 in the presence of increasing concentrations of metformin. The extent of LDL oxidation was assessed by measuring lipid hydroperoxide and malondialdehyde concentrations, relative electrophoretic mobilities, and oxidation-specific immune epitopes. Cytotoxicity of oxLDL in the vascular endothelial cell line EA.hy926 was assessed using the alamarBlue viability test. Quantum chemical calculations were performed to determine free energies of reactions between metformin and radicals typical for lipid oxidation. Metformin concentration-dependently impeded the formation of lipid hydroperoxides, malondialdehyde, and oxidation-specific immune epitopes when oxidation of LDL was initiated by addition of Cu2+. The cytotoxicity of oxLDL was reduced when it was obtained under increasing concentrations of metformin. The quantum chemical calculations revealed that only the reaction of metformin with hydroxyl radicals is exergonic, whereas the reactions with hydroperoxyl radicals or superoxide radical anions are endergonic. Metformin, beside its glucose-lowering effect, might be a suitable agent to impede the development of atherosclerosis and associated CVD. This is due to its capability to impede LDL oxidation, most likely by scavenging hydroxyl radicals.

13.
J Cachexia Sarcopenia Muscle ; 14(1): 93-107, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36351437

RESUMO

BACKGROUND: Cancer-associated cachexia (CAC) is a wasting syndrome drastically reducing efficacy of chemotherapy and life expectancy of patients. CAC affects up to 80% of cancer patients, yet the mechanisms underlying the disease are not well understood and no approved disease-specific medication exists. As a multiorgan disorder, CAC can only be studied on an organismal level. To cover the diverse aetiologies of CAC, researchers rely on the availability of a multifaceted pool of cancer models with varying degrees of cachexia symptoms. So far, no tumour model syngeneic to C57BL/6 mice exists that allows direct comparison between cachexigenic- and non-cachexigenic tumours. METHODS: MCA207 and CHX207 fibrosarcoma cells were intramuscularly implanted into male or female, 10-11-week-old C57BL/6J mice. Tumour tissues were subjected to magnetic resonance imaging, immunohistochemical-, and transcriptomic analysis. Mice were analysed for tumour growth, body weight and -composition, food- and water intake, locomotor activity, O2 consumption, CO2 production, circulating blood cells, metabolites, and tumourkines. Mice were sacrificed with same tumour weights in all groups. Adipose tissues were examined using high-resolution respirometry, lipolysis measurements in vitro and ex vivo, and radioactive tracer studies in vivo. Gene expression was determined in adipose- and muscle tissues by quantitative PCR and Western blotting analyses. Muscles and cultured myotubes were analysed histologically and by immunofluorescence microscopy for myofibre cross sectional area and myofibre diameter, respectively. Interleukin-6 (Il-6) was deleted from cancer cells using CRISPR/Cas9 mediated gene editing. RESULTS: CHX207, but not MCA207-tumour-bearing mice exhibited major clinical features of CAC, including systemic inflammation, increased plasma IL-6 concentrations (190 pg/mL, P ≤ 0.0001), increased energy expenditure (+28%, P ≤ 0.01), adipose tissue loss (-47%, P ≤ 0.0001), skeletal muscle wasting (-18%, P ≤ 0.001), and body weight reduction (-13%, P ≤ 0.01) 13 days after cancer cell inoculation. Adipose tissue loss resulted from reduced lipid uptake and -synthesis combined with increased lipolysis but was not associated with elevated beta-adrenergic signalling or adipose tissue browning. Muscle atrophy was evident by reduced myofibre cross sectional area (-21.8%, P ≤ 0.001), increased catabolic- and reduced anabolic signalling. Deletion of IL-6 from CHX207 cancer cells completely protected CHX207IL6KO -tumour-bearing mice from CAC. CONCLUSIONS: In this study, we present CHX207 fibrosarcoma cells as a novel tool to investigate the mediators and metabolic consequences of CAC in C57BL/6 mice in comparison to non-cachectic MCA207-tumour-bearing mice. IL-6 represents an essential trigger for CAC development in CHX207-tumour-bearing mice.


Assuntos
Caquexia , Interleucina-6 , Neoplasias , Animais , Feminino , Masculino , Camundongos , Tecido Adiposo/patologia , Caquexia/patologia , Fibrossarcoma/complicações , Interleucina-6/metabolismo , Camundongos Endogâmicos C57BL , Fibras Musculares Esqueléticas/metabolismo , Atrofia Muscular/patologia , Neoplasias/complicações
14.
J Lipid Res ; 53(11): 2307-17, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22891293

RESUMO

The hydrolysis of triglycerides in adipocytes, termed lipolysis, provides free fatty acids as energy fuel. Murine lipolysis largely depends on the activity of adipose triglyceride lipase (ATGL), which is regulated by two proteins annotated as comparative gene identification-58 (CGI-58) and G0/G1 switch gene-2 (G0S2). CGI-58 activates and G0S2 inhibits ATGL activity. In contrast to mice, the functional role of G0S2 in human adipocyte lipolysis is poorly characterized. Here we show that overexpression or silencing of G0S2 in human SGBS adipocytes decreases and increases lipolysis, respectively. Human G0S2 is upregulated during adipocyte differentiation and inhibits ATGL activity in a dose-dependent manner. Interestingly, C-terminally truncated ATGL mutants, which fail to localize to lipid droplets, translocate to the lipid droplet upon coexpression with G0S2, suggesting that G0S2 anchors ATGL to lipid droplets independent of ATGL's C-terminal lipid binding domain. Taken together, our results indicate that G0S2 also regulates human lipolysis by affecting enzyme activity and intracellular localization of ATGL. Increased lipolysis is known to contribute to the pathogenesis of insulin resistance, and G0S2 expression has been shown to be reduced in poorly controlled type 2 diabetic patients. Our data indicate that downregulation of G0S2 in adipose tissue could represent one of the underlying causes leading to increased lipolysis in the insulin-resistant state.


Assuntos
Adipócitos/metabolismo , Proteínas de Ciclo Celular/metabolismo , Cisteína Endopeptidases/metabolismo , Lipase/metabolismo , Lipólise/fisiologia , Células 3T3-L1 , Animais , Proteínas de Ciclo Celular/genética , Diferenciação Celular , Células Cultivadas , Cisteína Endopeptidases/genética , Humanos , Immunoblotting , Técnicas In Vitro , Lipase/genética , Lipólise/genética , Camundongos , Camundongos Endogâmicos C57BL , Microscopia de Fluorescência , Mutagênese Sítio-Dirigida
15.
Sci Rep ; 12(1): 12165, 2022 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-35842435

RESUMO

Plasmapheresis (PE) is an established form of therapeutic apheresis (TA). Purpose of this longitudinal prospective single center study was to investigate the effect of PE on albumin redox state (ARS), as infusion of commercial albumin during PE may alter albumin oxidation which has an impact on its functional properties and oxidative stress level. 43 subjects with autoimmune-mediated neurological disorders were included. 20 subjects in the experimental group received five treatments of PE. 13 subjects received five treatments of immunoadsorption and 10 subjects received no TA as controls. ARS was determined before and after TA and 12 days after the last TA by fractionating it into human mercaptalbumin (HMA), human non-mercaptalbumin 1 (HNA-1), and human non-mercaptalbumin 2 (HNA-2) by high-performance liquid chromatography. Irreversibly oxidised HNA-2 increased over the course of five PE treatments from 2.8% (IQR 1.3-3.7%) to 13.6% (IQR 10.9-15.9) (P < 0.01) and remained elevated 12 days after the last PE procedure (7.7% IQR 7.1-10.5, P < 0.05). The study showed for the first time that PE exerts a severe and long-lasting alteration on ARS indicating a new adverse effect of PE, that may influence oxidative stress level.


Assuntos
Estresse Oxidativo , Plasmaferese , Cromatografia Líquida de Alta Pressão , Humanos , Oxirredução , Estudos Prospectivos , Albumina Sérica Humana/metabolismo
16.
Biomedicines ; 10(3)2022 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-35327451

RESUMO

Nitric oxide donors (NO-donors) have been shown to have therapeutic potential (e.g., ischemia/reperfusion injury). However, due to their release rate/antiplatelet properties, they may cause bleeding in patients. We therefore studied the antiplatelet effects of the two different NO-donors, i.e., S-NO-Human Serum Albumin (S-NO-HSA) and Diethylammonium (Z)-1-(N,N-diethylamino)diazen-1-ium-1,2-diolate (DEA-NONOate) in whole blood (WB) samples. WB samples were spiked with S-NO-HSA or DEA-NONOate (100 µmol/L or 200 µmol/L), and the NO release rate (nitrite/nitrate levels via HPLC) and antiplatelet efficacy (impedance aggregometry, platelet function analyzer, Cone-and-platelet analyzer, thrombelastometry) were assessed. S-NO-HSA had a significantly lower NO release compared to equimolar concentrations of DEA-NONOate. Virtually no antiplatelet action of S-NO-HSA was observed in WB samples, whereas DEA-NONOate significantly attenuated platelet function in WB. Impedance aggregometry measurements revealed that Amplitudes (slope: -0.04022 ± 0.01045 ohm/µmol/L, p = 0.008) and Lag times (slope: 0.6389 ± 0.2075 s/µmol/L, p = 0.0051) were dose-dependently decreased and prolonged by DEA-NONOate. Closure times (Cone-and-platelet analyzer) were dose-dependently prolonged (slope: 0.3738 ± 0.1403 s/µmol/L, p = 0.0174 with collagen/ADP coating; slope: -0.5340 ± 0.1473 s/µmol/L, p = 0.0019 with collagen/epinephrine coating) by DEA-NONOate. These results in WB further support the pharmacological potential of S-NO-HSA as an NO-donor due to its ability to presumably prevent bleeding events even at high concentrations up to 200 µmol/L.

17.
Biomedicines ; 10(11)2022 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-36359289

RESUMO

The incidence of thrombosis increases with aging. We investigated the coagulatory/haemostatic system across the ages and tested the hypothesis that older persons have a hypercoagulable state compared to younger persons at rest, and that standing up (orthostasis) leads to greater changes in coagulation in older persons. In total, 22 older and 20 young participants performed a 6 min sit-to-stand test (orthostatic challenge). Blood was collected prior to and at the end of standing and haemostatic profiling was performed via thrombelastometry (TEM), calibrated automated thrombogram (CAT) and standard coagulation assays. At baseline, three CAT-derived values indicated enhanced capability to generate thrombin in older participants. However, other measured parameters did not suggest a hypercoagulable state in older participants: prolonged TEM-derived coagulation times (295 vs. 209 s, medians, p = 0.0025) and prothrombin times (103 vs. 114%, medians, p = 0.0087), as well as lower TF levels (440 vs. 672 pg/mL, medians, p = 0.0245) and higher t-PA levels (7.3 vs. 3.8 ng/mL, medians, p = 0.0002), indicative of enhanced fibrinolytic capability, were seen. Younger participants were more sensitive to the orthostatic challenge: CAT-derived endogenous thrombin potentials (ETPs) were only increased in the young (1337 to 1350 nM.min, medians, p = 0.0264) and shortening of PTs was significantly higher in the young vs. older participants (p = 0.0242). Our data suggest that the increased thrombosis propensity in older persons is not primarily attributable to a hyperactive coagulation cascade but may be due to other pathologies associated with aging.

18.
Biomolecules ; 12(9)2022 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-36139111

RESUMO

Phospholipid metabolism, including phosphatidylcholine (PC) biosynthesis, is crucial for various biological functions and is associated with longevity. Phosphatidylethanolamine N-methyltransferase (PEMT) is a protein that catalyzes the biosynthesis of PC, the levels of which change in various organs such as the brain and kidneys during aging. However, the role of PEMT for systemic PC supply is not fully understood. To address how PEMT affects aging-associated energy metabolism in tissues responsible for nutrient absorption, lipid storage, and energy consumption, we employed NMR-based metabolomics to study the liver, plasma, intestine (duodenum, jejunum, and ileum), brown/white adipose tissues (BAT and WAT), and skeletal muscle of young (9-10 weeks) and old (91-132 weeks) wild-type (WT) and PEMT knockout (KO) mice. We found that the effect of PEMT-knockout was tissue-specific and age-dependent. A deficiency of PEMT affected the metabolome of all tissues examined, among which the metabolome of BAT from both young and aged KO mice was dramatically changed in comparison to the WT mice, whereas the metabolome of the jejunum was only slightly affected. As for aging, the absence of PEMT increased the divergence of the metabolome during the aging of the liver, WAT, duodenum, and ileum and decreased the impact on skeletal muscle. Overall, our results suggest that PEMT plays a previously underexplored, critical role in both aging and energy metabolism.


Assuntos
Envelhecimento , Fígado , Fosfatidiletanolamina N-Metiltransferase , Animais , Fígado/metabolismo , Camundongos , Camundongos Knockout , Fosfatidilcolinas , Fosfatidiletanolamina N-Metiltransferase/genética , Fosfatidiletanolamina N-Metiltransferase/metabolismo , Fosfolipídeos/metabolismo
19.
Viruses ; 15(1)2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36680051

RESUMO

People with diabetes have an increased risk of experiencing adverse COVID-19 outcomes. COVID-19 vaccination is, therefore, highly recommended. However, people with diabetes have an inherently elevated risk of thrombotic events and the impact of the vaccination on the coagulation system in this patient population remains to be elucidated. The aim of this study was to investigate the impact of COVID-19 vaccination on the haemostatic system in people with type 1 or type 2 diabetes. We evaluated the effects of COVID-19 vaccination (BioNTech Pfizer, Moderna, AstraZeneca) on standard coagulation parameters, whole blood coagulation (Thrombelastometry), platelet function (impedance aggregation), and thrombin generation (calibrated automated thrombography) in people with type 1 diabetes mellitus (n = 41) and type 2 diabetes mellitus (n = 37). Blood sampling points were prior to vaccination and two weeks after the respective vaccination. Thrombelastometry measurements indicated moderately increased clot formation post-vaccination in people with type 1, as well as with type 2, diabetes: "Clot formation times" were significantly shorter, and both "maximum clot firmness" and "alpha angles" were significantly higher, as compared to the respective pre-vaccination values. Therefore, TEM parameters were not altered after vaccination in patients receiving ASA. Moreover, platelet aggregation was enhanced in people with type 1 diabetes, and plasma levels of D-Dimer were increased in people with type 2 diabetes, following COVID-19 vaccination. All other standard coagulation parameters, as well as thrombin generation, were not affected by the vaccination. The coagulation responses of people with diabetes to COVID-19 vaccination were only subclinical and comparable to those observed in healthy individuals. Our findings suggest that people with diabetes do not face an increased activation of the coagulation post-vaccination.


Assuntos
COVID-19 , Diabetes Mellitus Tipo 1 , Diabetes Mellitus Tipo 2 , Hemostáticos , Humanos , Vacinas contra COVID-19/efeitos adversos , Trombina , COVID-19/prevenção & controle , Vacinação
20.
Biomed Pharmacother ; 154: 113640, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36081286

RESUMO

Atherosclerosis, the leading cause of cardiovascular disease responsible for the majority of deaths worldwide, cannot be sufficiently explained by established risk factors, including hypercholesterolemia. Elevated plasma homocysteine is an independent risk factor for atherosclerosis and is strongly linked to cardiovascular mortality. However, the role of homocysteine in atherosclerosis is still insufficiently understood. Previous research in this area has been also hampered by the lack of reproducible in vivo models of atherosclerosis that resemble the human situation. Here, we have developed and applied an automated system for vessel wall injury that leads to more homogenous damage and more pronounced atherosclerotic plaque development, even at low balloon pressure. Our automated system helped to glean vital details of cholesterol-independent changes in the aortic wall of balloon-injured rabbits. We show that deficiency of B vitamins, which are required for homocysteine degradation, leads to atherogenic transformation of the aorta resulting in accumulation of macrophages and lipids, impairment of its biomechanical properties and disorganization of aortic collagen/elastin in the absence of hypercholesterolemia. A combination of B vitamin deficiency and hypercholesterolemia leads to thickening of the aorta, decreased aortic water diffusion, increased LDL-cholesterol and impaired vascular reactivity compared to any single condition. Our findings suggest that deficiency of B vitamins leads to atherogenic transformation of the aorta even in the absence of hypercholesterolemia and aggravates atherosclerosis development in its presence.


Assuntos
Aterosclerose , Hipercolesterolemia , Hiperlipidemias , Complexo Vitamínico B , Animais , Aorta/metabolismo , Aterosclerose/metabolismo , Colesterol , Dieta Aterogênica , Homocisteína/metabolismo , Humanos , Hipercolesterolemia/metabolismo , Hiperlipidemias/metabolismo , Coelhos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA