Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 88
Filtrar
1.
Plant J ; 2024 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-39378337

RESUMO

Leaf senescence is a complex developmental process influenced by abscisic acid (ABA) and reactive oxygen species (ROS), both of which increase during senescence. Understanding the regulatory mechanisms of leaf senescence can provide insights into enhancing crop yield and stress tolerance. In this study, we aimed to elucidate the role and mechanisms of rice (Oryza sativa) LONG GRAIN 3 (OsLG3), an APETALA2/ETHYLENE RESPONSIVE FACTOR (AP2/ERF) transcription factor, in orchestrating dark-induced leaf senescence. The transcript levels of OsLG3 gradually increased during dark-induced and natural senescence. Transgenic plants overexpressing OsLG3 exhibited delayed senescence, whereas CRISPR/Cas9-mediated oslg3 mutants exhibited accelerated leaf senescence. OsLG3 overexpression suppressed senescence-induced ABA signaling by downregulating OsABF4 (an ABA-signaling-related gene) and reduced ROS accumulation by enhancing catalase activity through upregulation of OsCATC. In vivo and in vitro binding assays demonstrated that OsLG3 downregulated OsABF4 and upregulated OsCATC by binding directly to their promoter regions. These results demonstrate the critical role of OsLG3 in fine-tuning leaf senescence progression by suppressing ABA-mediated signaling while simultaneously activating ROS-scavenging mechanisms. These findings suggest that OsLG3 could be targeted to enhance crop resilience and longevity.

2.
Plant J ; 117(2): 599-615, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37902786

RESUMO

Chloroplasts are essential organelles in plants that contain chlorophylls and facilitate photosynthesis for growth and development. As photosynthetic efficiency significantly impacts crop productivity, understanding the regulatory mechanisms of chloroplast development has been crucial in increasing grain and biomass production. This study demonstrates the involvement of OsGATA16, an ortholog of Arabidopsis GATA, NITRATE INDUCIBLE, CARBON-METABOLISM INVOLVED (GNC), and GNC-LIKE/CYTOKININ-RESPONSIVE GATA FACTOR 1 (GNL/CGA1), in chlorophyll biosynthesis and chloroplast development in rice (Oryza sativa). The osgata16-1 knockdown mutants produced pale-green leaves, while OsGATA16-overexpressed plants (OsGATA16-OE1) generated dark-green leaves, compared to their parental japonica rice. Reverse transcription and quantitative PCR analysis revealed downregulation of genes related to chloroplast division, chlorophyll biosynthesis, and photosynthesis in the leaves of osgata16-1 and upregulation in those of OsGATA16-OE1. Additionally, in vivo binding assays showed that OsGATA16 directly binds to the promoter regions of OsHEMA, OsCHLH, OsPORA, OsPORB, and OsFtsZ, and upregulates their expression. These findings indicate that OsGATA16 serves as a positive regulator controlling chlorophyll biosynthesis and chloroplast development in rice.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Oryza , Oryza/metabolismo , Cloroplastos/metabolismo , Fotossíntese/genética , Clorofila/metabolismo , Arabidopsis/genética , Folhas de Planta/metabolismo , Regulação da Expressão Gênica de Plantas , Fatores de Transcrição/metabolismo , Proteínas de Arabidopsis/metabolismo
3.
Plant Physiol ; 2024 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-39418078

RESUMO

In plants, balancing growth and environmental responses is crucial for maximizing fitness. Close proximity among plants and canopy shade, which negatively impacts reproduction, elicits morphological adjustments such as hypocotyl growth and leaf hyponasty, mainly through changes in light quality and auxin levels. However, how auxin, synthesized from a shaded leaf blade, distally induces elongation of hypocotyl and petiole cells remains to be elucidated. We demonstrated that ASYMMETRIC LEAVES1 (AS1) promotes leaf hyponasty through the regulation of auxin biosynthesis, polar auxin transport, and auxin signaling genes in Arabidopsis (Arabidopsis thaliana). AS1 overexpression leads to elongation of the abaxial petiole cells with auxin accumulation in the petiole, resulting in hyponastic growth, which is abolished by the application of an auxin transport inhibitor to the leaf blade. In addition, the as1 mutant exhibits reduced hypocotyl growth under shade conditions. We observed that AS1 protein accumulates in the nucleus in response to shade or far-red light. Chromatin immunoprecipitation analysis identified the association of AS1 with the promoters of YUCCA8 (YUC8) and INDOLE-3-ACETIC ACID INDUCIBLE 19 (IAA19). In addition, AS1 forms complexes with PHYTOCHROME INTERACTING FACTORs in the nucleus and synergistically induces YUC8 and IAA19 expression. Our findings suggest that AS1 plays a crucial role in facilitating phenotypic plasticity to the surroundings by connecting light and phytohormone action.

4.
Plant Cell Environ ; 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39012205

RESUMO

Flowering time is a crucial adaptive response to seasonal variation in plants and is regulated by environmental cues such as photoperiod and temperature. In this study, we demonstrated the regulatory function of rice CRYPTOCHROME-INTERACTING BASIC HELIX-LOOP-HELIX 1-LIKE (OsCIBL1) in flowering time. Overexpression of OsCIB1L promoted flowering, whereas the oscib1l knockout mutation did not alter flowering time independent of photoperiodic conditions. Cryptochromes (CRYs) are blue light photoreceptors that enable plants to sense photoperiodic changes. OsCIBL1 interacted with OsCRY2, a member of the rice CRY family (OsCRY1a, OsCRY1b, and OsCRY2), and bound to the Early heading date 1 (Ehd1) promoter, activating the rice-specific Ehd1-Heading date 3a/RICE FLOWERING LOCUS T 1 pathway for flowering induction. Dual-luciferase reporter assays showed that the OsCIBL1-OsCRY2 complex required blue light to induce Ehd1 transcription. Natural alleles resulting from nonsynonymous single nucleotide polymorphisms in OsCIB1L and OsCRY2 may contribute to the adaptive expansion of rice cultivation areas. These results expand our understanding of the molecular mechanisms controlling rice flowering and highlight the importance of blue light-responsive genes in the geographic distribution of rice.

5.
Plant J ; 112(2): 339-351, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35984735

RESUMO

The cuticular wax layer on leaf surfaces limits non-stomatal water loss to the atmosphere and protects against pathogen invasion. Although many genes associated with wax biosynthesis and wax transport in plants have been identified, their regulatory mechanisms remain largely unknown. Here, we show that the MYB transcription factor OsMYB60 positively regulates cuticular wax biosynthesis and this helps rice (Oryza sativa) plants tolerate drought stress. Compared with the wild type (japonica cultivar 'Dongjin'), osmyb60 null mutants (osmyb60-1 and osmyb60-2) exhibited increased drought sensitivity, with more chlorophyll leaching and higher rates of water loss. Quantitative reverse-transcription PCR showed that the loss of function of OsMYB60 led to downregulation of wax biosynthesis genes, leading to reduced amounts of total wax components on leaf surfaces under normal conditions. Yeast one-hybrid, luciferase transient transcriptional activity, and chromatin immunoprecipitation assays revealed that OsMYB60 directly binds to the promoter of OsCER1 (a key gene involved in very-long-chain alkane biosynthesis) and upregulates its expression. Taken together, these results demonstrate that OsMYB60 enhances rice resilience to drought stress by promoting cuticular wax biosynthesis on leaf surfaces.


Assuntos
Oryza , Oryza/genética , Oryza/metabolismo , Secas , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Ceras/metabolismo , Plantas Geneticamente Modificadas/genética , Folhas de Planta/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Mutação , Clorofila/metabolismo , Água/metabolismo , Alcanos/metabolismo , Luciferases/genética
6.
Plant Physiol ; 190(1): 640-656, 2022 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-35723564

RESUMO

The timing of flowering is a crucial factor for successful grain production at a wide range of latitudes. Domestication of rice (Oryza sativa) included selection for natural alleles of flowering-time genes that allow rice plants to adapt to broad geographic areas. Here, we describe the role of natural alleles of CIRCADIAN CLOCK ASSOCIATED1 (OsCCA1) in cultivated rice based on analysis of single-nucleotide polymorphisms deposited in the International Rice Genebank Collection Information System database. Rice varieties harboring japonica-type OsCCA1 alleles (OsCCA1a haplotype) flowered earlier than those harboring indica-type OsCCA1 alleles (OsCCA1d haplotype). In the japonica cultivar "Dongjin", a T-DNA insertion in OsCCA1a resulted in late flowering under long-day and short-day conditions, indicating that OsCCA1 is a floral inducer. Reverse transcription quantitative PCR analysis showed that the loss of OsCCA1a function induces the expression of the floral repressors PSEUDO-RESPONSE REGULATOR 37 (OsPRR37) and Days to Heading 8 (DTH8), followed by repression of the Early heading date 1 (Ehd1)-Heading date 3a (Hd3a)-RICE FLOWERING LOCUS T 1 (RFT1) pathway. Binding affinity assays indicated that OsCCA1 binds to the promoter regions of OsPRR37 and DTH8. Naturally occurring OsCCA1 alleles are evolutionarily conserved in cultivated rice (O. sativa). Oryza rufipogon-I (Or-I) and Or-III type accessions, representing the ancestors of O. sativa indica and japonica, harbored indica- and japonica-type OsCCA1 alleles, respectively. Taken together, our results demonstrate that OsCCA1 is a likely domestication locus that has contributed to the geographic adaptation and expansion of cultivated rice.


Assuntos
Relógios Circadianos , Oryza , Alelos , Relógios Circadianos/genética , Flores/fisiologia , Oryza/metabolismo , Fotoperíodo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
7.
Plant Physiol ; 188(4): 1900-1916, 2022 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-34718775

RESUMO

During crop cultivation, water-deficit conditions retard growth, thus reducing crop productivity. Therefore, uncovering the mechanisms behind drought tolerance is a critical task for crop improvement. Here, we show that the rice (Oryza sativa) WRKY transcription factor OsWRKY5 negatively regulates drought tolerance. We determined that OsWRKY5 was mainly expressed in developing leaves at the seedling and heading stages, and that its expression was reduced by drought stress and by treatment with NaCl, mannitol, and abscisic acid (ABA). Notably, the genome-edited loss-of-function alleles oswrky5-2 and oswrky5-3 conferred enhanced drought tolerance, measured as plant growth under water-deficit conditions. Conversely, the overexpression of OsWRKY5 in the activation-tagged line oswrky5-D resulted in higher susceptibility under the same conditions. The loss of OsWRKY5 activity increased sensitivity to ABA, thus promoting ABA-dependent stomatal closure. Transcriptome deep sequencing and reverse transcription quantitative polymerase chain reaction analyses demonstrated that the expression of abiotic stress-related genes including rice MYB2 (OsMYB2) was upregulated in oswrky5 knockout mutants and downregulated in oswrky5-D mutants. Moreover, dual-luciferase, yeast one-hybrid, and chromatin immunoprecipitation assays showed that OsWRKY5 directly binds to the W-box sequences in the promoter region of OsMYB2 and represses OsMYB2 expression, thus downregulating genes downstream of OsMYB2 in the ABA signaling pathways. Our results demonstrate that OsWRKY5 functions as a negative regulator of ABA-induced drought stress tolerance, strongly suggesting that inactivation of OsWRKY5 or manipulation of key OsWRKY5 targets could be useful to improve drought tolerance in rice cultivars.


Assuntos
Ácido Abscísico , Oryza , Ácido Abscísico/metabolismo , Ácido Abscísico/farmacologia , Secas , Regulação da Expressão Gênica de Plantas , Oryza/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Transdução de Sinais , Estresse Fisiológico , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
8.
Plant Physiol ; 189(3): 1662-1676, 2022 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-35166830

RESUMO

Under favorable moisture, temperature, and light conditions, gibberellin (GA) biosynthesis is induced and triggers seed germination. A major mechanism by which GA promotes seed germination is by promoting the degradation of the DELLA protein RGA-LIKE 2 (RGL2), a major repressor of germination in Arabidopsis (Arabidopsis thaliana) seeds. Analysis of seed germination phenotypes of constitutive photomorphogenic 1 (cop1) mutants and complemented COP1-OX/cop1-4 lines in response to GA and paclobutrazol (PAC) suggested a positive role for COP1 in seed germination and a relation with GA signaling. cop1-4 mutant seeds showed PAC hypersensitivity, but transformation with a COP1 overexpression construct rendered them PAC insensitive, with a phenotype similar to that of rgl2 mutant (rgl2-SK54) seeds. Furthermore, cop1-4 rgl2-SK54 double mutants showed a PAC-insensitive germination phenotype like that of rgl2-SK54, identifying COP1 as an upstream negative regulator of RGL2. COP1 interacted directly with RGL2, and in vivo this interaction was strongly enhanced by SUPPRESSOR OF PHYA-105 1. COP1 directly ubiquitinated RGL2 to promote its degradation. Moreover, GA stabilized COP1 with consequent RGL2 destabilization. By uncovering this COP1-RGL2 regulatory module, we reveal a mechanism whereby COP1 positively regulates seed germination and controls the expression of germination-promoting genes.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis , Proteínas Repressoras/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Germinação , Giberelinas/metabolismo , Giberelinas/farmacologia , Sementes/metabolismo , Fatores de Transcrição/metabolismo
9.
Plant Cell Environ ; 46(5): 1504-1520, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36683564

RESUMO

Drought tolerance is important for grain crops, including rice (Oryza sativa); for example, rice cultivated under intermittent irrigation produces less methane gas compared to rice grown in anaerobic paddy field conditions, but these plants require greater drought tolerance. Moreover, the roles of rice circadian-clock genes in drought tolerance remain largely unknown. Here, we show that the mutation of LOV KELCH REPEAT PROTEIN 2 (OsLKP2) enhanced drought tolerance by increasing cuticular wax biosynthesis. Among ZEITLUPE family genes, OsLKP2 expression specifically increased under dehydration stress. OsLKP2 knockdown (oslkp2-1) and knockout (oslkp2-2) mutants exhibited enhanced drought tolerance. Cuticular waxes inhibit non-stomatal water loss. Under drought conditions, total wax loads on the leaf surface increased by approximately 10% in oslkp2-1 and oslkp2-2 compared to the wild type, and the transcript levels of cuticular wax biosynthesis genes were upregulated in the oslkp2 mutants. Yeast two-hybrid, bimolecular fluorescence complementation, and coimmunoprecipitation assays revealed that OsLKP2 interacts with GIGANTEA (OsGI) in the nucleus. The osgi mutants also showed enhanced tolerance to drought stress, with a high density of wax crystals on their leaf surface. These results demonstrate that the OsLKP2-OsGI interaction negatively regulates wax accumulation on leaf surfaces, thereby decreasing rice resilience to drought stress.


Assuntos
Secas , Oryza , Oryza/genética , Oryza/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Repetição Kelch , Ceras/metabolismo , Regulação da Expressão Gênica de Plantas , Folhas de Planta/metabolismo
10.
Plant Cell ; 32(3): 630-649, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31911455

RESUMO

In most plants, abscisic acid (ABA) induces premature leaf senescence; however, the mechanisms of ABA signaling during leaf senescence remain largely unknown. Here, we show that the rice (Oryza sativa) NAM/ATAF1/2/CUC2 (NAC) transcription factor ONAC054 plays an important role in ABA-induced leaf senescence. The onac054 knockout mutants maintained green leaves, while ONAC054-overexpressing lines showed early leaf yellowing under dark- and ABA-induced senescence conditions. Genome-wide microarray analysis showed that ABA signaling-associated genes, including ABA INSENSITIVE5 (OsABI5) and senescence-associated genes, including STAY-GREEN and NON-YELLOW COLORING1 (NYC1), were significantly down-regulated in onac054 mutants. Chromatin immunoprecipitation and protoplast transient assays showed that ONAC054 directly activates OsABI5 and NYC1 by binding to the mitochondrial dysfunction motif in their promoters. ONAC054 activity is regulated by proteolytic processing of the C-terminal transmembrane domain (TMD). We found that nuclear import of ONAC054 requires cleavage of the putative C-terminal TMD. Furthermore, the ONAC054 transcript (termed ONAC054α) has an alternatively spliced form (ONAC054ß), with seven nucleotides inserted between intron 5 and exon 6, truncating ONAC054α protein at a premature stop codon. ONAC054ß lacks the TMD and thus localizes to the nucleus. These findings demonstrate that the activity of ONAC054, which is important for ABA-induced leaf senescence in rice, is precisely controlled by multilayered regulatory processes.


Assuntos
Ácido Abscísico/farmacologia , Membrana Celular/metabolismo , Oryza/crescimento & desenvolvimento , Oryza/genética , Folhas de Planta/crescimento & desenvolvimento , Proteínas de Plantas/metabolismo , Sequência de Aminoácidos , Sequência de Bases , Escuridão , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Modelos Biológicos , Mutação/genética , Oryza/efeitos dos fármacos , Oryza/ultraestrutura , Fenótipo , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/genética , Folhas de Planta/ultraestrutura , Proteínas de Plantas/química , Proteínas de Plantas/genética , Ligação Proteica/efeitos dos fármacos , Domínios Proteicos , Transcrição Gênica/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/genética
11.
Plant Cell Environ ; 45(8): 2446-2459, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35610056

RESUMO

The vegetative-to-reproductive transition requires the complex, coordinated activities of many transcriptional regulators. Rice (Oryza sativa), a facultative short-day (SD) plant, flowers early under SD (≤10 h light/day) and late under long-day (LD; ≥14 h light/day) conditions. Here, we demonstrate that rice LATE FLOWERING SEMI-DWARF (LFS) encodes an APETALA2/ETHYLENE RESPONSIVE FACTOR (AP2/ERF) transcription factor that promotes flowering under non-inductive LD conditions. LFS showed diurnal expression peaking at dawn, and transcript levels increased gradually until heading. Mutation of LFS delayed flowering under LD but not SD conditions. Expression of the LD-specific floral repressor gene LEAFY COTYLEDON2 AND FUSCA3-LIKE 1 (OsLFL1) was upregulated in lfs knockout mutants, and LFS bound directly to the GCC-rich motif in the OsLFL1 promoter, repressing OsLFL1 expression. This suggests that increased LFS activity during vegetative growth gradually attenuates OsLFL1 activity. Subsequent increases in Early heading date 1, Heading date 3a, and RICE FLOWERING LOCUS T 1 expression result in flowering under non-inductive LD conditions. LFS did not affect the expression of other OsLFL1 regulators, including OsMADS50, OsMADS56, VERNALIZATION INSENSITIVE3-LIKE 2, and GERMINATION DEFECTIVE 1, or interact with them. Our results demonstrate the novel roles of LFS in inducing flowering under natural LD conditions.


Assuntos
Oryza , Fatores de Transcrição , Etilenos/metabolismo , Flores , Regulação da Expressão Gênica de Plantas , Oryza/metabolismo , Fotoperíodo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
12.
Int J Mol Sci ; 22(3)2021 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-33525623

RESUMO

Genetic studies have revealed that chromatin modifications affect flowering time, but the underlying mechanisms by which chromatin remodeling factors alter flowering remain largely unknown in rice (Oryza sativa). Here, we show that Rolled Fine Striped (RFS), a chromodomain helicase DNA-binding 3 (CHD3)/Mi-2 subfamily ATP-dependent chromatin remodeling factor, promotes flowering in rice. Diurnal expression of RFS peaked at night under short-day (SD) conditions and at dawn under long-day (LD) conditions. The rfs-1 and rfs-2 mutants (derived from different genetic backgrounds) displayed a late-flowering phenotype under SD and LD conditions. Reverse transcription-quantitative PCR analysis revealed that among the flowering time-related genes, the expression of the major floral repressor Grain number and heading date 7 (Ghd7) was mainly upregulated in rfs mutants, resulting in downregulation of its downstream floral inducers, including Early heading date 1 (Ehd1), Heading date 3a (Hd3a), and Rice FLOWERING LOCUS T 1 (RFT1). The rfs mutation had pleiotropic negative effects on rice grain yield and yield components, such as plant height and fertility. Taking these observations together, we propose that RFS participates in multiple aspects of rice development, including the promotion of flowering independent of photoperiod.


Assuntos
DNA Helicases/genética , Histonas/metabolismo , Oryza/fisiologia , Montagem e Desmontagem da Cromatina , DNA Helicases/metabolismo , Epigênese Genética , Flores/genética , Flores/fisiologia , Regulação da Expressão Gênica de Plantas , Metilação , Mutação , Oryza/genética , Fotoperíodo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
13.
Int J Mol Sci ; 21(2)2020 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-31936829

RESUMO

Expansins are key regulators of cell-wall extension and are also involved in the abiotic stress response. In this study, we evaluated the function of OsEXPA7 involved in salt stress tolerance. Phenotypic analysis showed that OsEXPA7 overexpression remarkably enhanced tolerance to salt stress. OsEXPA7 was highly expressed in the shoot apical meristem, root, and the leaf sheath. Promoter activity of OsEXPA7:GUS was mainly observed in vascular tissues of roots and leaves. Morphological analysis revealed structural alterations in the root and leaf vasculature of OsEXPA7 overexpressing (OX) lines. OsEXPA7 overexpression resulted in decreased sodium ion (Na+) and accumulated potassium ion (K+) in the leaves and roots. Under salt stress, higher antioxidant activity was also observed in the OsEXPA7-OX lines, as indicated by lower reactive oxygen species (ROS) accumulation and increased antioxidant activity, when compared with the wild-type (WT) plants. In addition, transcriptional analysis using RNA-seq and RT-PCR revealed that genes involved in cation exchange, auxin signaling, cell-wall modification, and transcription were differentially expressed between the OX and WT lines. Notably, salt overly sensitive 1, which is a sodium transporter, was highly upregulated in the OX lines. These results suggest that OsEXPA7 plays an important role in increasing salt stress tolerance by coordinating sodium transport, ROS scavenging, and cell-wall loosening.


Assuntos
Regulação da Expressão Gênica de Plantas , Oryza/genética , Oryza/metabolismo , Proteínas de Plantas/genética , Tolerância ao Sal/genética , Antioxidantes , Clorofila/análise , Genes de Plantas/genética , Germinação , Ácidos Indolacéticos , Folhas de Planta/metabolismo , Proteínas de Plantas/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/genética , Potássio/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Estresse Salino , Sódio/metabolismo , Estresse Fisiológico/genética
14.
Int J Mol Sci ; 21(6)2020 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-32197452

RESUMO

Changes in plant architecture, such as leaf size, leaf shape, leaf angle, plant height, and floral organs, have been major factors in improving the yield of cereal crops. Moreover, changes in grain size and weight can also increase yield. Therefore, screens for additional factors affecting plant architecture and grain morphology may enable additional improvements in yield. Among the basic Helix-Loop-Helix (bHLH) transcription factors in rice (Oryza sativa), we found an enhancer-trap T-DNA insertion mutant of OsbHLH079 (termed osbhlh079-D). The osbhlh079-D mutant showed a wide leaf angle phenotype and produced long grains, similar to the phenotypes of mutants with increased brassinosteroid (BR) levels or enhanced BR signaling. Reverse transcription-quantitative PCR analysis showed that BR signaling-associated genes are largely upregulated in osbhlh079-D, but BR biosynthesis-associated genes are not upregulated, compared with its parental japonica cultivar 'Dongjin'. Consistent with this, osbhlh079-D was hypersensitive to BR treatment. Scanning electron microscopy revealed that the expansion of cell size in the adaxial side of the lamina joint was responsible for the increase in leaf angle in osbhlh079-D. The expression of cell-elongation-associated genes encoding expansins and xyloglucan endotransglycosylases/hydrolases increased in the lamina joints of leaves in osbhlh079-D. The regulatory function of OsbHLH079 was further confirmed by analyzing 35S::OsbHLH079 overexpression and 35S::RNAi-OsbHLH079 gene silencing lines. The 35S::OsbHLH079 plants showed similar phenotypes to osbhlh079-D, and the 35S::RNAi-OsbHLH079 plants displayed opposite phenotypes to osbhlh079-D. Taking these observations together, we propose that OsbHLH079 functions as a positive regulator of BR signaling in rice.


Assuntos
Sequências Hélice-Alça-Hélice , Oryza/metabolismo , Folhas de Planta/metabolismo , Proteínas de Plantas/metabolismo , Sementes/metabolismo , Transdução de Sinais , Fatores de Transcrição/metabolismo , Brassinosteroides/metabolismo , Mutagênese Insercional , Oryza/anatomia & histologia , Oryza/genética , Folhas de Planta/anatomia & histologia , Folhas de Planta/genética , Proteínas de Plantas/genética , Sementes/anatomia & histologia , Sementes/genética , Fatores de Transcrição/genética
15.
Plant Cell Physiol ; 60(9): 2065-2076, 2019 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-31135055

RESUMO

Leaf senescence is the final stage of leaf development and in cereal crops, the timing of senescence relative to grain filling has major effects on agronomic traits such as yield. Although many genetic factors are involved in the regulation of leaf senescence in cereals, the key regulators remain to be determined. Plant transcription factors with a conserved DOF (DNA-binding one zinc finger) domain play roles in multiple physiological processes. Here, we show a novel function for OsDOF24 as a repressor of leaf senescence in rice (Oryza sativa). In wild-type leaves, OsDOF24 expression rapidly decreased during natural senescence (NS) and dark-induced senescence (DIS). The gain-of-function mutant osdof24-D, which contains an enhancer-trap T-DNA in the OsDOF24 promoter, exhibited delayed leaf yellowing during NS and DIS. Transgenic plants overexpressing OsDOF24 showed the same phenotype during DIS. Reverse-transcription quantitative real-time PCR analysis revealed that senescence-associated genes (Osl85, Osl57 and OsNAP) and chlorophyll degradation genes (NYC1, NYC3 and SGR) were downregulated in the osdof24-D mutant during dark incubation. Among the phytohormones, only methyl jasmonate induced OsDOF24 expression. Furthermore, the reduced expression of jasmonate biosynthesis-related genes (OsLOX2, OsLOX8, OsHI-LOX, OsAOS1 and OsAOS2) in osdof24-D decreased endogenous jasmonate levels, resulting in delayed leaf senescence under DIS conditions. Yeast one-hybrid assays showed that OsDOF24 binds to the promoter region of OsAOS1. Taken together, our results demonstrate that OsDOF24 suppresses the induction of leaf senescence during vegetative growth by deactivating jasmonate biosynthetic pathways.


Assuntos
Acetatos/metabolismo , Ciclopentanos/metabolismo , Regulação da Expressão Gênica de Plantas , Oryza/genética , Oxilipinas/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Plantas/metabolismo , Regulação para Baixo , Grão Comestível , Oryza/fisiologia , Fenótipo , Folhas de Planta/genética , Folhas de Planta/fisiologia , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Dedos de Zinco
16.
Biochem Biophys Res Commun ; 508(1): 191-197, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30471853

RESUMO

CONSTITUTIVELY PHOTOMORPHOGENIC1 (COP1), a multifunctional E3 ligase protein with many target proteins, is involved in diverse developmental processes throughout the plant's lifecycle, including seed germination, the regulation of circadian rhythms, photomorphogenesis, and the control of flowering time. To function, COP1 must form multimeric complexes with SUPPRESSOR OF PHYA1 (SPA1), i.e., [(COP1)2(SPA1)2] tetramers. We recently reported that the blue-light receptor FKF1 (FLAVIN-BINDING, KELCH REPEAT, F-BOX1) represses COP1 activity by inhibiting its homodimerization, but it is not yet clear whether FKF1 affects the formation of COP1-containing multimeric complexes. To explore this issue, we performed size exclusion chromatography (SEC) of Arabidopsis thaliana proteins and found that the levels and composition of COP1-containing multimeric complexes varied throughout a 24-h period. The levels of 440-669 kDa complexes were dramatically reduced in the late afternoon compared to the morning and at night in wild-type plants. During the daytime, the levels of these complexes were reduced in FKF1-overexpressing plants but not in fkf1-t, a loss-of-function mutant of FKF1, suggesting that FKF1 is closely associated with the destabilization of COP1 multimeric protein complexes in a light-dependent manner. We also analyzed the SEC patterns of COP1 multimeric complexes in transgenic plants overexpressing mutant COP1 variants, including COP1L105A (which forms homodimers) and COP1L170A (which cannot form homodimers), and found that COP1 multimeric complexes were scarce in plants overexpressing COP1L170A. These results indicate that COP1 homodimers serve as basic building blocks that assemble into COP1 multimeric complexes with diverse target proteins. We propose that light-activated FKF1 inhibits COP1 homodimerization, mainly by destabilizing 440-669 kDa COP1 complexes, resulting in the repression of CONSTANS-degrading COP1 activity in the late afternoon in long days, but not in short days, thereby regulating photoperiodic flowering in Arabidopsis.


Assuntos
Proteínas de Arabidopsis/biossíntese , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/efeitos da radiação , Arabidopsis/metabolismo , Arabidopsis/efeitos da radiação , Luz , Ubiquitina-Proteína Ligases/biossíntese , Ubiquitina-Proteína Ligases/efeitos da radiação , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Cromatografia em Gel , Mutação , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
17.
J Exp Bot ; 70(10): 2699-2715, 2019 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-30825376

RESUMO

MYB-type transcription factors (TFs) play important roles in plant growth and development, and in the responses to several abiotic stresses. In rice (Oryza sativa), the roles of MYB-related TFs in leaf senescence are not well documented. Here, we examined rice MYB TF gene OsMYB102 and found that an OsMYB102 T-DNA activation-tagged line (termed osmyb102-D), which constitutively expresses OsMYB102 under the control of four tandem repeats of the 35S promoter, and OsMYB102-overexpressing transgenic lines (35S:OsMYB102 and 35S:GFP-OsMYB102) maintain green leaves much longer than the wild-type under natural, dark-induced, and abscisic acid (ABA)-induced senescence conditions. Moreover, an osmyb102 knockout mutant showed an accelerated senescence phenotype under dark-induced and ABA-induced leaf senescence conditions. Microarray analysis showed that a variety of senescence-associated genes (SAGs) were down-regulated in the osmyb102-D line. Further studies demonstrated that overexpression of OsMYB102 controls the expression of SAGs, including genes associated with ABA degradation and ABA signaling (OsABF4, OsNAP, and OsCYP707A6), under dark-induced senescence conditions. OsMYB102 inhibits ABA accumulation by directly activating the transcription of OsCYP707A6, which encodes the ABA catabolic enzyme ABSCISIC ACID 8'-HYDROXYLASE. OsMYB102 also indirectly represses ABA-responsive genes, such as OsABF4 and OsNAP. Collectively, these results demonstrate that OsMYB102 plays a critical role in leaf senescence by down-regulating ABA accumulation and ABA signaling responses.


Assuntos
Ácido Abscísico/metabolismo , Oryza/fisiologia , Folhas de Planta/fisiologia , Proteínas de Plantas/genética , Fatores de Transcrição/genética , Oryza/genética , Proteínas de Plantas/metabolismo , Transdução de Sinais , Fatores de Tempo , Fatores de Transcrição/metabolismo
18.
Int J Mol Sci ; 20(20)2019 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-31652646

RESUMO

Exploring genetic methods to improve yield in grain crops such as rice (Oryza sativa) is essential to help meet the needs of the increasing population. Here, we report that rice ONAC096 affects grain yield by regulating leaf senescence and panicle number. ONAC096 expression increased rapidly in rice leaves upon the initiation of aging- and dark-induced senescence. Two independent T-DNA insertion mutants (onac096-1 and onac096-2) with downregulated ONAC096 expression retained their green leaf color during natural senescence in the field, thus extending their photosynthetic capacity. Reverse-transcription quantitative PCR analysis showed that ONAC096 upregulated genes controlling chlorophyll degradation and leaf senescence. Repressed OsCKX2 (encoding cytokinin oxidase/dehydrogenase) expression in the onac096 mutants led to a 15% increase in panicle number without affecting grain weight or fertility. ONAC096 mediates abscisic acid (ABA)-induced leaf senescence by upregulating the ABA signaling genes ABA INSENSITIVE5 and ENHANCED EM LEVEL. The onac096 mutants showed a 16% increase in grain yield, highlighting the potential for using this gene to increase grain production.


Assuntos
Grão Comestível/genética , Oryza/genética , Proteínas de Plantas/genética , Fatores de Transcrição/genética , Mutação , Oryza/crescimento & desenvolvimento , Oxirredutases/genética , Oxirredutases/metabolismo , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Proteínas de Plantas/metabolismo , Fatores de Transcrição/metabolismo
19.
Int J Mol Sci ; 20(18)2019 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-31505875

RESUMO

he onset of leaf senescence is triggered by external cues and internal factors such as phytohormones and signaling pathways involving transcription factors (TFs). Abscisic acid (ABA) strongly induces senescence and endogenous ABA levels are finely tuned by many senescence-associated TFs. Here, we report on the regulatory function of the senescence-induced TF OsWRKY5 TF in rice (Oryza sativa). OsWRKY5 expression was rapidly upregulated in senescing leaves, especially in yellowing sectors initiated by aging or dark treatment. A T-DNA insertion activation-tagged OsWRKY5-overexpressing mutant (termed oswrky5-D) promoted leaf senescence under natural and dark-induced senescence (DIS) conditions. By contrast, a T-DNA insertion oswrky5-knockdown mutant (termed oswrky5) retained leaf greenness during DIS. Reverse-transcription quantitative PCR (RT-qPCR) showed that OsWRKY5 upregulates the expression of genes controlling chlorophyll degradation and leaf senescence. Furthermore, RT-qPCR and yeast one-hybrid analysis demonstrated that OsWRKY5 indirectly upregulates the expression of senescence-associated NAM/ATAF1/2/CUC2 (NAC) genes including OsNAP and OsNAC2. Precocious leaf yellowing in the oswrky5-D mutant might be caused by elevated endogenous ABA concentrations resulting from upregulated expression of ABA biosynthesis genes OsNCED3, OsNCED4, and OsNCED5, indicating that OsWRKY is a positive regulator of ABA biosynthesis during leaf senescence. Furthermore, OsWRKY5 expression was suppressed by ABA treatment. Taken together, OsWRKY5 is a positive regulator of leaf senescence that upregulates senescence-induced NAC, ABA biosynthesis, and chlorophyll degradation genes.


Assuntos
Ácido Abscísico/metabolismo , Regulação da Expressão Gênica de Plantas/fisiologia , Oryza/metabolismo , Folhas de Planta/metabolismo , Proteínas de Plantas/metabolismo , Fatores de Transcrição/metabolismo , Clorofila/genética , Clorofila/metabolismo , Técnicas de Silenciamento de Genes , Oryza/genética , Folhas de Planta/genética , Proteínas de Plantas/genética , Fatores de Transcrição/genética
20.
Plant J ; 92(6): 1106-1120, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29032592

RESUMO

Arabidopsis EARLY FLOWERING3 (ELF3) functions in modulating light input to the circadian clock, as a component of ELF3-ELF4-LUX ARRHYTHMO (LUX) evening complex. However, the role of ELF3 in stress responses remains largely unknown. In this study, we show that ELF3 enhances plants' resilience to salt stress: ELF3-overexpressing (ELF3-OX) plants are salt-tolerant, while elf3 mutants are more sensitive to salt stress. The expressions of many salt stress- and senescence-associated genes are altered in elf3-1 and ELF3-OX plants compared with wild-type. During salt stress, ELF3 suppresses factors that promote salt stress response pathways, mainly GIGANTEA (GI), at the post-translational level, and PHYTOCHROME INTERACTING FACTOR4 (PIF4), at the transcriptional level. To enhance the salt stress response, PIF4 directly downregulates the transcription of JUNGBRUNNEN1 (JUB1/ANAC042), encoding a transcription factor that upregulates the expression of stress tolerance genes, DREB2A and DELLA. Furthermore, PIF4 directly upregulates the transcription of ORESARA1 (ORE1/ANAC092) and SAG29, positive regulators of salt stress response pathways. Based on our results, we propose that ELF3 modulates key regulatory components in salt stress response pathways at the transcriptional and post-translational levels.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Estresse Fisiológico , Fatores de Transcrição/metabolismo , Arabidopsis/fisiologia , Proteínas de Arabidopsis/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Relógios Circadianos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Mutação , Plantas Geneticamente Modificadas , Espécies Reativas de Oxigênio/metabolismo , Tolerância ao Sal , Fatores de Transcrição/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA