Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Plant Physiol ; 156(1): 301-18, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21427280

RESUMO

Pepino mosaic virus (PepMV) is a highly infectious potexvirus and a major disease of greenhouse tomato (Solanum lycopersicum) crops worldwide. Damage and economic losses caused by PepMV vary greatly and can be attributed to differential symptomatology caused by different PepMV isolates. Here, we used a custom-designed Affymetrix tomato GeneChip array with probe sets to interrogate over 22,000 tomato transcripts to study transcriptional changes in response to inoculation of tomato seedlings with a mild and an aggressive PepMV isolate that share 99.4% nucleotide sequence identity. The two isolates induced a different transcriptomic response, despite accumulating to similar viral titers. PepMV inoculation resulted in repression of photosynthesis. In addition, defense responses were stronger upon inoculation with the aggressive isolate, in both cases mediated by salicylic acid signaling rather than by jasmonate signaling. Our results furthermore show that PepMV differentially regulates the RNA silencing pathway, suggesting a role for a PepMV-encoded silencing suppressor. Finally, perturbation of pigment biosynthesis, as shown by differential regulation of the flavonoid and lycopene biosynthesis pathways, was monitored. Metabolite analyses on mature fruits of PepMV-infected tomato plants, which showed typical fruit marbling, revealed a decrease in carotenoids, likely responsible for the marbled phenotype, and an increase in alkaloids and phenylpropanoids that are associated with pathogen defense in the yellow sectors of the fruit.


Assuntos
Interações Hospedeiro-Patógeno , Doenças das Plantas/imunologia , Potexvirus/fisiologia , Solanum lycopersicum/genética , Transcriptoma , Alcaloides/metabolismo , Sequência de Bases , Carotenoides/metabolismo , Perfilação da Expressão Gênica , Genoma Viral , Solanum lycopersicum/imunologia , Solanum lycopersicum/virologia , Dados de Sequência Molecular , Análise de Sequência com Séries de Oligonucleotídeos , Fenótipo , Doenças das Plantas/virologia , Propanóis/metabolismo , Interferência de RNA , Ácido Salicílico/metabolismo , Plântula/genética , Plântula/imunologia , Plântula/virologia , Especificidade da Espécie
2.
Front Microbiol ; 8: 447, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28382027

RESUMO

Rhizogenic Agrobacterium biovar 1 is the causative agent of hairy root disease (HRD) in the hydroponic cultivation of tomato and cucumber causing significant losses in marketable yield. In order to prevent and control the disease chemical disinfectants such as hydrogen peroxide or hypochlorite are generally applied to sanitize the hydroponic system and/or hydroponic solution. However, effective control of HRD sometimes requires high disinfectant doses that may have phytotoxic effects. Moreover, several of these chemicals may be converted to unwanted by-products with human health hazards. Here we explored the potential of beneficial bacteria as a sustainable means to control HRD. A large collection of diverse bacterial genera was screened for antagonistic activity against rhizogenic Agrobacterium biovar 1 using the agar overlay assay. Out of more than 150 strains tested, only closely related Paenibacillus strains belonging to a particular clade showed antagonistic activity, representing the species P. illinoisensis, P. pabuli, P. taichungensis, P. tundrae, P. tylopili, P. xylanexedens, and P. xylanilyticus. Assessment of the spectrum of activity revealed that some strains were able to inhibit the growth of all 35 rhizogenic agrobacteria strains tested, while others were only active against part of the collection, suggesting a different mode of action. Preliminary characterization of the compounds involved in the antagonistic activity of two closely related Paenibacillus strains, tentatively identified as P. xylanexedens, revealed that they are water-soluble and have low molecular weight. Application of a combination of these strains in greenhouse conditions resulted in a significant reduction of HRD, indicating the great potential of these strains to control HRD.

3.
FEMS Microbiol Ecol ; 91(8): fiv081, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26187479

RESUMO

Rhizogenic Agrobacterium biovar 1 strains have been found to cause extensive root proliferation on hydroponically grown Cucurbitaceae and Solanaceae crops, resulting in substantial economic losses. As these agrobacteria live under similar ecological conditions, infecting a limited number of crops, it may be hypothesized that genetic and phenotypic variation among such strains is relatively low. In this study we assessed the phenotypic diversity as well as the phylogenetic and evolutionary relationships of several rhizogenic Agrobacterium biovar 1 strains from cucurbit and solanaceous crops. A collection of 41 isolates was subjected to a number of phenotypic assays and characterized by MLSA targeting four housekeeping genes (16S rRNA gene, recA, rpoB and trpE) and two loci from the root-inducing Ri-plasmid (part of rolB and virD2). Besides phenotypic variation, remarkable genotypic diversity was observed, especially for some chromosomal loci such as trpE. In contrast, genetic diversity was lower for the plasmid-borne loci, indicating that the studied chromosomal housekeeping genes and Ri-plasmid-borne loci might not exhibit the same evolutionary history. Furthermore, phylogenetic and network analyses and several recombination tests suggested that recombination could be contributing in some extent to the evolutionary dynamics of rhizogenic Agrobacterium populations. Finally, a genomospecies-level identification analysis revealed that at least four genomospecies may occur on cucurbit and tomato crops (G1, G3, G8 and G9). Together, this study gives a first glimpse at the genetic and phenotypic diversity within this economically important plant pathogenic bacterium.


Assuntos
Agrobacterium/classificação , Produtos Agrícolas/microbiologia , Cucurbitaceae/microbiologia , Variação Genética , Raízes de Plantas/microbiologia , Solanum lycopersicum/microbiologia , Agrobacterium/genética , Agrobacterium/isolamento & purificação , Sequência de Bases , DNA Bacteriano/genética , Filogenia , Doenças das Plantas/microbiologia , Plasmídeos/genética , RNA Ribossômico 16S/genética , Recombinases Rec A/genética , Análise de Sequência de DNA
4.
Mol Plant Pathol ; 14(9): 923-33, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23855964

RESUMO

Recently, Pepino mosaic virus (PepMV) infections causing severe yellowing symptoms in tomato plants have been reported in glasshouse tomato crops. When studying this phenomenon in commercial glasshouses, two different types of yellowing symptoms, occurring in adjacent plants, were distinguished: interveinal leaf yellowing and yellow mosaics. After several weeks, the interveinal leaf yellowing symptoms gradually disappeared and the plant heads became green again, with yellow mosaic patterns on the leaves as an intermediate stage. The sequencing of multiple isolates causing interveinal leaf yellowing identified two point mutations, occurring in positions 155 and 166 of the coat protein (CP), as unique to the yellowing pathotype. Site-directed mutagenesis of infectious clones confirmed that both CP mutations are determinants of the interveinal leaf yellowing symptoms. Sequencing of CP clones from plants or plant parts with the yellow mosaic symptoms resulted in a mixture of wild-type and mutated sequences, whereas sequencing of CP clones from the green heads of recovered plants resulted in only wild-type sequences. Yellow mosaic symptoms could be reproduced by inoculation of an artificial 1:1 mixture of RNA transcripts from the wild-type and mutated infectious clones. These results show that the ratio of mutated versus wild-type sequences can determine the nature and severity of symptom development. The gradual recovery of the plants, which coincides with the disappearance of the yellowing mutations, suggests that selection pressure acts to the advantage of the wild-type virus. Experiments with wild-type and mutated infectious clones showed that reverse mutation events from mutant to wild-type occur and that the wild-type virus does not have a replicative advantage over the mutant. These results suggest that reverse mutation events occur, with subsequent selection pressure acting in favour of the wild-type virus in the growing plant parts, possibly related to a lower long-distance movement efficiency of the mutant.


Assuntos
Proteínas do Capsídeo/genética , Vírus do Mosaico/genética , Mutação/genética , Doenças das Plantas/virologia , Solanum lycopersicum/virologia , Sequência de Aminoácidos , Proteínas do Capsídeo/isolamento & purificação , Modelos Moleculares , Vírus do Mosaico/isolamento & purificação , Vírus do Mosaico/fisiologia , Mutagênese Sítio-Dirigida , Fenótipo , Replicação Viral/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA