Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Circ Res ; 128(1): 24-38, 2021 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-33106094

RESUMO

RATIONALE: Cardiac ECM (extracellular matrix) comprises a dynamic molecular network providing structural support to heart tissue function. Understanding the impact of ECM remodeling on cardiac cells during heart failure (HF) is essential to prevent adverse ventricular remodeling and restore organ functionality in affected patients. OBJECTIVES: We aimed to (1) identify consistent modifications to cardiac ECM structure and mechanics that contribute to HF and (2) determine the underlying molecular mechanisms. METHODS AND RESULTS: We first performed decellularization of human and murine ECM (decellularized ECM) and then analyzed the pathological changes occurring in decellularized ECM during HF by atomic force microscopy, 2-photon microscopy, high-resolution 3-dimensional image analysis, and computational fluid dynamics simulation. We then performed molecular and functional assays in patient-derived cardiac fibroblasts based on YAP (yes-associated protein)-transcriptional enhanced associate domain (TEAD) mechanosensing activity and collagen contraction assays. The analysis of HF decellularized ECM resulting from ischemic or dilated cardiomyopathy, as well as from mouse infarcted tissue, identified a common pattern of modifications in their 3-dimensional topography. As compared with healthy heart, HF ECM exhibited aligned, flat, and compact fiber bundles, with reduced elasticity and organizational complexity. At the molecular level, RNA sequencing of HF cardiac fibroblasts highlighted the overrepresentation of dysregulated genes involved in ECM organization, or being connected to TGFß1 (transforming growth factor ß1), interleukin-1, TNF-α, and BDNF signaling pathways. Functional tests performed on HF cardiac fibroblasts pointed at mechanosensor YAP as a key player in ECM remodeling in the diseased heart via transcriptional activation of focal adhesion assembly. Finally, in vitro experiments clarified pathological cardiac ECM prevents cell homing, thus providing further hints to identify a possible window of action for cell therapy in cardiac diseases. CONCLUSIONS: Our multiparametric approach has highlighted repercussions of ECM remodeling on cell homing, cardiac fibroblast activation, and focal adhesion protein expression via hyperactivated YAP signaling during HF.


Assuntos
Cardiomiopatia Dilatada/metabolismo , Matriz Extracelular/metabolismo , Fibroblastos/metabolismo , Insuficiência Cardíaca/metabolismo , Infarto do Miocárdio/metabolismo , Miocárdio/metabolismo , Função Ventricular Esquerda , Remodelação Ventricular , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Cardiomiopatia Dilatada/genética , Cardiomiopatia Dilatada/patologia , Cardiomiopatia Dilatada/fisiopatologia , Estudos de Casos e Controles , Movimento Celular , Células Cultivadas , Modelos Animais de Doenças , Matriz Extracelular/genética , Matriz Extracelular/ultraestrutura , Fibroblastos/ultraestrutura , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/patologia , Insuficiência Cardíaca/fisiopatologia , Humanos , Mecanotransdução Celular , Camundongos Endogâmicos C57BL , Infarto do Miocárdio/genética , Infarto do Miocárdio/patologia , Infarto do Miocárdio/fisiopatologia , Miocárdio/ultraestrutura , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas de Sinalização YAP
2.
Int J Mol Sci ; 24(11)2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37298151

RESUMO

Epigenetic changes, host-gut microbiota interactions, and environmental factors contribute to inflammatory bowel disease (IBD) onset and progression. A healthy lifestyle may help to slow down the chronic or remitting/relapsing intestinal tract inflammation characteristic of IBD. In this scenario, the employment of a nutritional strategy to prevent the onset or supplement disease therapies included functional food consumption. Its formulation consists of the addition of a phytoextract enriched in bioactive molecules. A good candidate as an ingredient is the Cinnamon verum aqueous extract. Indeed, this extract, subjected to a process of gastrointestinal digestion simulation (INFOGEST), exhibits beneficial antioxidant and anti-inflammatory properties in an in vitro model of the inflamed intestinal barrier. Here, we deepen the study of the mechanisms related to the effect of digested cinnamon extract pre-treatment, showing a correlation between transepithelial electrical resistance (TEER) decrement and alterations in claudin-2 expression under Tumor necrosis factor-α/Interleukin-1ß (TNF-α/IL-1) ß cytokine administration. Our results show that pre-treatment with cinnamon extract prevents TEER loss by claudin-2 protein level regulation, influencing both gene transcription and autophagy-mediated degradation. Hence, cinnamon polyphenols and their metabolites probably work as mediators in gene regulation and receptor/pathway activation, leading to an adaptive response against renewed insults.


Assuntos
Cinnamomum zeylanicum , Doenças Inflamatórias Intestinais , Humanos , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo , Claudina-2 , Interleucina-1beta/genética , Casca de Planta/metabolismo , Doenças Inflamatórias Intestinais/tratamento farmacológico , Doenças Inflamatórias Intestinais/metabolismo , Expressão Gênica
3.
Genomics ; 113(3): 1349-1365, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33713822

RESUMO

Yes-associated protein 1 (YAP1) is a transcriptional co-activator downstream of Hippo pathway. The pathway exerts crucial roles in organogenesis and its dysregulation is associated with the spreading of different cancer types. YAP1 gene encodes for multiple protein isoforms, whose specific functions are not well defined. We demonstrate the splicing of isoform-specific mRNAs is controlled in a stage- and tissue-specific fashion. We designed expression vectors encoding for the most-represented isoforms of YAP1 with either one or two WW domains and studied their specific signaling activities in YAP1 knock-out cell lines. YAP1 isoforms display both common and unique functions and activate distinct transcriptional programs, as the result of their unique protein interactomes. By generating TEAD-based transcriptional reporter cell lines, we demonstrate individual YAP1 isoforms display unique effects on cell proliferation and differentiation. Finally, we illustrate the complexity of the regulation of Hippo-YAP1 effector in physiological and in pathological conditions of the heart.


Assuntos
Proteínas de Ciclo Celular , Isoformas de RNA , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas de Sinalização YAP
4.
Molecules ; 27(21)2022 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-36363983

RESUMO

Valorisation of food by-products has recently attracted considerable attention due to the opportunities to improve the economic and environmental sustainability of the food production chain. Large quantities of non-edible parts of the artichoke plant (Cynara cardunculus L.) comprising leaves, stems, roots, bracts, and seeds are discarded annually during industrial processing. These by-products contain many phytochemicals such as dietary fibres, phenolic acids, and flavonoids, whereby the most challenging issue concerns about the recovery of high-added value components from these by-products. The aim of this work is to develop a novel valorisation strategy for the sustainable utilisation of artichoke leaves' waste, combining green pressurised-liquid extraction (PLE), spectrophotometric assays and UPLC-HRMS phytochemical characterization, to obtain bioactive-rich extract with high antioxidant capacity. Multivariate analysis of the major selected metabolites was used to compare different solvent extraction used in PLE.


Assuntos
Cynara scolymus , Cynara , Cynara scolymus/química , Análise de Dados , Cynara/metabolismo , Antioxidantes/química , Compostos Fitoquímicos/análise , Extratos Vegetais/química , Análise Multivariada
6.
Food Chem X ; 22: 101324, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38590634

RESUMO

The cultivation of Camelina sativa (L.) Crantz is rapidly increasing due to oil production resulting in a substantial volume of by-products, which still have an interesting composition in secondary metabolites, especially glucosinolates. Therefore, a green extraction procedure of glucosinolates by Pressurised Liquid Extraction was developed and optimized using a chemometric approach. Furthermore, the glucosinolates were purified by solid phase extraction, and a preliminary study on bioaccessibility and bioavailability study was carried out to evaluate the resistance of the glucosinolates to the digestive process. The application of pressurised liquid extraction to the recovery of glucosinolates from camelina sativa by-product, is a green, automatic, and rapid method, representing a valid alternative to conventional extraction method to obtain ingredients for food industries.

7.
J Food Sci ; 89(6): 3729-3744, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38709878

RESUMO

Citrus fruits are a diverse and economically important group of fruit crops known for their distinctive flavors and high nutritional value. Their cultivation and consumption contribute significantly to the global agricultural economy and offer a wide range of health benefits. Among the genetic diversity of citrus species, Citrus x limon (L.) Osbeck is particularly relevant due to its chemical composition and potential health benefits. Two cultivars from the Sicily region (southern Italy) were compared for their phenolic content and preliminary antioxidant activity to select the distinctive extract with potential biological activity. A detailed characterization revealed the occurrence of phenolics, coumarins, and flavonoids. The quantification of metabolites contained in the selected extract was performed by an ultrahigh-performance liquid chromatographic method coupled with an ultraviolet detector. Different concentrations were tested in vivo through the fish embryo acute toxicity test, and the 50% lethal dose of 107,833 µg mL-1 was calculated. Finally, the effect of the extract on hatching was evaluated, and a dose-dependent relationship with the accelerated hatching rate was reported, suggesting a Femminello Zagara Bianca green peel upregulating effect on the hatching enzymes. PRACTICAL APPLICATION: Citrus fruits and their products continue to be one of the natural food sources with the highest waste output. In this study, we demonstrate how food industry waste, particularly lemon peel, is rich in bioactive compounds with anti-inflammatory and antioxidant properties that may be used in the nutraceuticals industry.


Assuntos
Antioxidantes , Citrus , Embrião não Mamífero , Flavonoides , Frutas , Metabolômica , Fenóis , Extratos Vegetais , Peixe-Zebra , Animais , Citrus/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Frutas/química , Antioxidantes/farmacologia , Antioxidantes/análise , Embrião não Mamífero/efeitos dos fármacos , Fenóis/análise , Fenóis/toxicidade , Metabolômica/métodos , Flavonoides/análise , Sicília , Cumarínicos/análise , Cromatografia Líquida de Alta Pressão/métodos
8.
Plants (Basel) ; 13(8)2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38674473

RESUMO

Orchids are experiencing wide success in ornamental, medicinal, and food fields. The reason for their success is correlated with both their morphology and metabolomics, the latter linked to their taste and biological effects. Despite many orchids having already been the subject of chemotaxonomic works, some of them are still untapped, like the case of Orchis purpurea. O. purpurea is one of the most common species of the genus Orchis, present in hedgerows, verges, and light woodland, where it is one of the few herbaceous plants able to be unpleasant to herbivorous animals. Essential oil from roots, stems, leaves, and flowers were analyzed via GC/MS analyses, revealing the presence of 70 compounds, with a clear prevalence of coumarin. The high concentration of this metabolite may explain the resistance of O. purpurea to herbivores, being associated with appetite-suppressing properties and a bitter taste. Non-volatile fractions were analyzed via UHPLC-MS analysis revealing the presence of hydroxycinnamic acid derivatives, polyphenols, and glycosidic compounds, probably responsible for their color and fragrance. Taken together, the herein presented results shed light on both the defensive strategy and the chemotaxonomy of O. purpurea.

9.
Plants (Basel) ; 13(10)2024 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-38794404

RESUMO

Heracleum mantegazzianum is an invasive species in middle Europe. The mode of action of its invasiveness is still not known. Our study focuses on observation of potential allelopathic influence by the production and release of phytochemicals into its environment. Plant material was collected four times within one season (April, May, June, July 2019) at locality Lekárovce (eastern Slovakia) for comparison of differences in composition and potential allelopathy. Water extracts from collected samples were used for different biological assays. The total phenols and flavonoids were determined spectrophotometrically. The profile and content of phenolic components, including coumarins, were determined by two techniques of liquid chromatography along with in vitro evaluation of the free radical scavenging activity of extracts (DPPH, Hydroxyl, Superoxide, and FRAP). The changes in composition in extracts in different seasonal periods were evident as well as potential phytotoxic activity in some concentrations on specific model plants. The slight antioxidant activity was noted. The invasiveness of the current species could be supported by the excretion of its phytochemicals into its surroundings and by different modes of action influencing living organisms in its environment.

10.
ACS Synth Biol ; 12(5): 1508-1519, 2023 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-37058502

RESUMO

Nowadays, the yeast Saccharomyces cerevisiae is the platform of choice for demonstrating the proof of concept of the production of metabolites with a complex structure. However, introducing heterologous genes and rewiring the endogenous metabolism is still not standardized enough, affecting negatively the readiness-to-market of such metabolites. We developed the Easy Modular Integrative fuSion-ready Expression (Easy-MISE) toolkit, which is a novel combination of synthetic biology tools based on a single Golden Gate multiplasmid assembly meant to further ameliorate the rational predictability and flexibility of the process of yeast engineering. Thanks to an improved cloning screening strategy, double and independent transcription units are easily assembled and subsequently integrated into previously characterized loci. Moreover, the devices can be tagged for localization. This design allows for a higher degree of modularity and increases the flexibility of the engineering strategy. We show with a case study how the developed toolkit accelerates the construction and the analysis of the intermediate and the final engineered yeast strains, leaving space to better characterize the heterologous biosynthetic pathway in the final host and, overall, to improve the fermentation performances. Different S. cerevisiae strains were built harboring different versions of the biochemical pathway toward glucobrassicin (GLB) production, an indolyl-methyl glucosinolate. In the end, we could demonstrate that in the tested conditions the best-producing strain leads to a final concentration of GLB of 9.80 ± 0.267 mg/L, a titer 10-fold higher than the best result previously reported in the literature.


Assuntos
Engenharia Metabólica , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Fermentação , Sistemas CRISPR-Cas
11.
Foods ; 12(3)2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36765979

RESUMO

Cinnamon bark is widely used for its organoleptic features in the food context and growing evidence supports its beneficial effect on human health. The market offers an increasingly wide range of food products and supplements enriched with cinnamon extracts which are eliciting beneficial and health-promoting properties. Specifically, the extract of Cinnamomum spp. is rich in antioxidant, anti-inflammatory and anticancer biomolecules. These include widely reported cinnamic acid and some phenolic compounds, such asproanthocyanidins A and B, and kaempferol. These molecules are sensitive to physical-chemical properties (such as pH and temperature) and biological agents that act during gastric digestion, which could impair molecules' bioactivity. Therefore, in this study, the cinnamon's antioxidant and anti-inflammatory bioactivity after simulated digestion was evaluated by analyzing the chemical profile of the pure extract and digested one, as well as the cellular effect in vitro models, such as Caco2 and intestinal barrier. The results showed that the digestive process reduces the total content of polyphenols, especially tannins, while preserving other bioactive compounds such as cinnamic acid. At the functional level, the digested extract maintains an antioxidant and anti-inflammatory effect at the cellular level.

12.
Antibiotics (Basel) ; 12(5)2023 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-37237705

RESUMO

In the present study, the chemical composition and the in vitro antimicrobial and antibiofilm activity of an ethanolic extract of propolis (EEP) from Tunisia against different ATCC and wild bacterial strains were evaluated. In situ antimicrobial activity and sensory influence of different EEP concentrations (0.5% and 1%), also in combination with 1% vinegar, were evaluated in chilled vacuum-packed salmon tartare. Furthermore, a challenge test was performed on salmon tartare experimentally contaminated with Listeria monocytogenes and treated with the different EEP formulations. The in vitro antimicrobial and antibiofilm activity was observed only against Gram-positive bacteria, such as L. monocytogenes and S. aureus, both ATCC and wild. Results of the in situ analyses revealed significant antimicrobial activity against aerobic colonies, lactic acid bacteria, Enterobacteriaceae and Pseudomonas spp. only when the EEP was used at 1% and in combination with 1% vinegar. The 1% EEP in combination with 1% vinegar was the most effective treatment also against L. monocytogenes, although 0.5% and 1% EEP used alone also showed antilisterial effects. After 7 days of storage, the sensory influence on odor, taste and color of salmon tartare was negligible for all EEP formulations. In this background, results obtained confirmed the antimicrobial efficacy of propolis which could be proposed as a suitable biopreservative to ensure safety and improve the quality of food.

13.
Antioxidants (Basel) ; 12(3)2023 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-36978813

RESUMO

The comparative chemical composition of different part of Faustrime fruits (peels, pulp, albedo, and seeds) extracted with different solvents was determined by GC-MS and UHPLC-HRMS QTof. The obtained data were also combined for their in vitro antioxidant activity by multivariate analysis to define a complex fingerprint of the fruit. The principal component analysis model showed the significative occurrence of volatile organic compounds as α-bisabolol and α-trans-bergamotol in the pulp and albedo, hexanoic acid in the seeds, and several coumarins and phenolics in the peels. The higher radical scavenging activity of the pulp was related to the incidence of citric acid in partial least square regression.

14.
Stem Cells ; 29(12): 2051-61, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22009661

RESUMO

Human heart harbors a population of resident progenitor cells that can be isolated by stem cell antigen-1 antibody and expanded in culture. These cells can differentiate into cardiomyocytes in vitro and contribute to cardiac regeneration in vivo. However, when directly injected as single cell suspension, less than 1%-5% survive and differentiate. Among the major causes of this failure are the distressing protocols used to culture in vitro and implant progenitor cells into damaged hearts. Human cardiac progenitors obtained from the auricles of patients were cultured as scaffoldless engineered tissues fabricated using temperature-responsive surfaces. In the engineered tissue, progenitor cells established proper three-dimensional intercellular relationships and were embedded in self-produced extracellular matrix preserving their phenotype and multipotency in the absence of significant apoptosis. After engineered tissues were leant on visceral pericardium, a number of cells migrated into the murine myocardium and in the vascular walls, where they integrated in the respective textures. The study demonstrates the suitability of such an approach to deliver stem cells to the myocardium. Interestingly, the successful delivery of cells in murine healthy hearts suggests that myocardium displays a continued cell cupidity that is strictly regulated by the limited release of progenitor cells by the adopted source. When an unregulated cell source is added to the system, cells are delivered to the myocardium. The exploitation of this novel concept may pave the way to the setup of new protocols in cardiac cell therapy.


Assuntos
Ventrículos do Coração/transplante , Miocárdio/metabolismo , Miócitos Cardíacos/citologia , Células-Tronco/citologia , Engenharia Tecidual/métodos , Idoso , Idoso de 80 Anos ou mais , Animais , Diferenciação Celular , Movimento Celular , Técnicas de Cocultura , Feminino , Perfilação da Expressão Gênica , Ventrículos do Coração/citologia , Ventrículos do Coração/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Miocárdio/citologia , Miócitos Cardíacos/fisiologia , Miócitos Cardíacos/transplante , Fenótipo , Transplante de Tecidos/métodos
15.
Sci Technol Adv Mater ; 13(6): 064205, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27877532

RESUMO

The acknowledged ability of synthetic materials to induce cell-specific responses regardless of biological supplies provides tissue engineers with the opportunity to find the appropriate materials and conditions to prepare tissue-targeted scaffolds. Stem and mature cells have been shown to acquire distinct morphologies in vitro and to modify their phenotype when grown on synthetic materials with tunable mechanical properties. The stiffness of the substrate used for cell culture is likely to provide cells with mechanical cues mimicking given physiological or pathological conditions, thus affecting the biological properties of cells. The sensitivity of cells to substrate composition and mechanical properties resides in multiprotein complexes called focal adhesions, whose dynamic modification leads to cytoskeleton remodeling and changes in gene expression. In this study, the remodeling of focal adhesions in human mesenchymal stem cells in response to substrate stiffness was followed in the first phases of cell-matrix interaction, using poly-ε-caprolactone planar films with similar chemical composition and different elasticity. As compared to mature dermal fibroblasts, mesenchymal stem cells showed a specific response to substrate stiffness, in terms of adhesion, as a result of differential focal adhesion assembly, while their multipotency as a bulk was not significantly affected by matrix compliance. Given the sensitivity of stem cells to matrix mechanics, the mechanobiology of such cells requires further investigations before preparing tissue-specific scaffolds.

16.
Sci Technol Adv Mater ; 13(6): 064211, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27877538

RESUMO

To maximize the therapeutic efficacy of cardiac muscle constructs produced by stem cells and tissue engineering protocols, suitable scaffolds should be designed to recapitulate all the characteristics of native muscle and mimic the microenvironment encountered by cells in vivo. Moreover, so not to interfere with cardiac contractility, the scaffold should be deformable enough to withstand muscle contraction. Recently, it was suggested that the mechanical properties of scaffolds can interfere with stem/progenitor cell functions, and thus careful consideration is required when choosing polymers for targeted applications. In this study, cross-linked poly-ε-caprolactone membranes having similar chemical composition and controlled stiffness in a supra-physiological range were challenged with two sources of myoblasts to evaluate the suitability of substrates with different stiffness for cell adhesion, proliferation and differentiation. Furthermore, muscle-specific and non-related feeder layers were prepared on stiff surfaces to reveal the contribution of biological and mechanical cues to skeletal muscle progenitor differentiation. We demonstrated that substrate stiffness does affect myogenic differentiation, meaning that softer substrates can promote differentiation and that a muscle-specific feeder layer can improve the degree of maturation in skeletal muscle stem cells.

17.
Foods ; 12(1)2022 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-36613272

RESUMO

Usual extraction processes for analyzing foods, supplements, and nutraceutical products involve massive amounts of organic solvents contributing to a negative impact on the environment and human health. In recent years, a new class of green solvents called natural deep eutectic solvents (NADES) have been considered a valid alternative to conventional solvents. Compared with conventional organic solvents, NADES have attracted considerable attention since they are sustainable, biodegradable, and non-toxic but also are easy to prepare, and have low production costs. Here we summarize the major aspects of NADEs such as the classification, preparation method physicochemical properties, and toxicity. Moreover, we provide an overview of novel extraction techniques using NADES as potential extractants of bioactive compounds from foods and food by-products, and application of NADEs in food analysis. This review aims to be useful for the further development of NAES and for broadening the knowledge of these new green solvents in order to increase their use for the extraction of bioactive compounds and in food analysis.

18.
Foods ; 11(20)2022 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-37430951

RESUMO

Cinnamon polyphenols are known as health-promoting agents. However, their positive impact depends on the extraction method and their bioaccessibility after digestion. In this work, cinnamon bark polyphenols were extracted in hot water and subjected to an in vitro enzymatic digestion. After a preliminary characterization of total polyphenols and flavonoids (respectively 520.05 ± 17.43 µgGAeq/mg and 294.77 ± 19.83 µgCATeq/mg powder extract), the extract antimicrobial activity was evidenced only against Staphylococcus aureus and Bacillus subtilis displaying a minimum inhibition growth concentration value of 2 and 1.3 mg/mL, respectively, although it was lost after in vitro extract digestion. The prebiotic potential was evaluated on probiotic Lactobacillus and Bifidobacterium strains highlighting a high growth on the in vitro digested cinnamon bark extract (up to 4 × 108 CFU/mL). Thus, the produced SCFAs and other secondary metabolites were extracted from the broth cultures and determined via GC-MSD analyses. The viability of healthy and tumor colorectal cell lines (CCD841 and SW480) was assayed after the exposition at two different concentrations (23 and 46 µgGAeq/mL) of the cinnamon extract, its digested, and the secondary metabolites produced in presence of cinnamon extract or its digested, showing positive protective effects against a tumorigenic condition.

19.
Front Nutr ; 9: 901944, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35938110

RESUMO

The food waste generated by small and medium agro-industrial enterprises requires appropriate management and valorization in order to decrease environmental problems and recover high-value products, respectively. In this study, the Camelina sativa seed by-product was used as a source of glucosinolates. To begin, the chemical profile of the extract obtained using an international organization for standardization (ISO) procedure was determined by UPLC-HRMS/MS analysis. In addition, an extraction method based on ultrasound-assisted extraction was developed as an alternative and green method to recover glucosinolates. Main parameters that affect extraction efficiency were optimized using a response surface design. Under optimized conditions, the extract showed an improvement in extraction yield with a reduction in organic solvent amount compared to those obtained using the ISO procedure. Finally, the extract obtained with the ultrasound-assisted method was purified, tested on human colorectal cancer cell lines, and showed promising results.

20.
Sci Transl Med ; 14(672): eabo5715, 2022 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-36417487

RESUMO

Cardiac pathologies are characterized by intense remodeling of the extracellular matrix (ECM) that eventually leads to heart failure. Cardiomyocytes respond to the ensuing biomechanical stress by reexpressing fetal contractile proteins via transcriptional and posttranscriptional processes, such as alternative splicing (AS). Here, we demonstrate that the heterogeneous nuclear ribonucleoprotein C (hnRNPC) is up-regulated and relocates to the sarcomeric Z-disc upon ECM pathological remodeling. We show that this is an active site of localized translation, where the ribonucleoprotein associates with the translation machinery. Alterations in hnRNPC expression, phosphorylation, and localization can be mechanically determined and affect the AS of mRNAs involved in mechanotransduction and cardiovascular diseases, including Hippo pathway effector Yes-associated protein 1. We propose that cardiac ECM remodeling serves as a switch in RNA metabolism by affecting an associated regulatory protein of the spliceosome apparatus. These findings offer new insights on the mechanism of mRNA homeostatic mechanoregulation in pathological conditions.


Assuntos
Insuficiência Cardíaca , Ribonucleoproteínas Nucleares Heterogêneas Grupo C , Humanos , Ribonucleoproteínas Nucleares Heterogêneas Grupo C/metabolismo , Mecanotransdução Celular , Miócitos Cardíacos/metabolismo , Insuficiência Cardíaca/metabolismo , Matriz Extracelular/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA