Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Development ; 150(23)2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37971083

RESUMO

Plant organ primordia develop successively at the shoot apical meristem (SAM). In Arabidopsis, primordia formed early in development differentiate into vegetative leaves, whereas those formed later generate inflorescence branches and flowers. TERMINAL FLOWER 1 (TFL1), a negative regulator of transcription, acts in the SAM to delay flowering and to maintain inflorescence meristem indeterminacy. We used confocal microscopy, time-resolved transcript profiling and reverse genetics to elucidate this dual role of TFL1. We found that TFL1 accumulates dynamically in the SAM reflecting its dual function. Moreover, TFL1 represses two major sets of genes. One set includes genes that promote flowering, expression of which increases earlier in tfl1 mutants. The other set is spatially misexpressed in tfl1 inflorescence meristems. The misexpression of these two gene sets in tfl1 mutants depends upon FD transcription factor, with which TFL1 interacts. Furthermore, the MADS-box gene SEPALLATA 4, which is upregulated in tfl1, contributes both to the floral transition and shoot determinacy defects of tfl1 mutants. Thus, we delineate the dual function of TFL1 in shoot development in terms of its dynamic spatial distribution and different modes of gene repression.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica no Desenvolvimento , Flores , Meristema/metabolismo
2.
Plant Cell Environ ; 46(11): 3175-3193, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37438895

RESUMO

Climate change is causing alterations in annual temperature regimes worldwide. Important aspects of this include the reduction of winter chilling temperatures as well as the occurrence of unpredicted frosts, both significantly affecting plant growth and yields. Recent studies advanced the knowledge of the mechanisms underlying cold responses and tolerance in the model plant Arabidopsis thaliana. However, how these cold-responsive pathways will readjust to ongoing seasonal temperature variation caused by global warming remains an open question. In this review, we highlight the plant developmental programmes that depend on cold temperature. We focus on the molecular mechanisms that plants have evolved to adjust their development and stress responses upon exposure to cold. Covering both genetic and epigenetic aspects, we present the latest insights into how alternative splicing, noncoding RNAs and the formation of biomolecular condensates play key roles in the regulation of cold responses. We conclude by commenting on attractive targets to accelerate the breeding of increased cold tolerance, bringing up biotechnological tools that might assist in overcoming current limitations. Our aim is to guide the reflection on the current agricultural challenges imposed by a changing climate and to provide useful information for improving plant resilience to unpredictable cold regimes.


Assuntos
Arabidopsis , Temperatura Baixa , Estações do Ano , Temperatura , Plantas , Arabidopsis/metabolismo , Mudança Climática , Regulação da Expressão Gênica de Plantas , Aclimatação/fisiologia
3.
Plant Cell ; 32(5): 1479-1500, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32132131

RESUMO

Several pathways conferring environmental flowering responses in Arabidopsis (Arabidopsis thaliana) converge on developmental processes that mediate the floral transition in the shoot apical meristem. Many characterized mutations disrupt these environmental responses, but downstream developmental processes have been more refractory to mutagenesis. Here, we constructed a quintuple mutant impaired in several environmental pathways and showed that it possesses severely reduced flowering responses to changes in photoperiod and ambient temperature. RNA-sequencing (RNA-seq) analysis of the quintuple mutant showed that the expression of genes encoding gibberellin biosynthesis enzymes and transcription factors involved in the age pathway correlates with flowering. Mutagenesis of the quintuple mutant generated two late-flowering mutants, quintuple ems1 (qem1) and qem2 The mutated genes were identified by isogenic mapping and transgenic complementation. The qem1 mutant is an allele of the gibberellin 20-oxidase gene ga20ox2, confirming the importance of gibberellin for flowering in the absence of environmental responses. By contrast, qem2 is impaired in CHROMATIN REMODELING4 (CHR4), which has not been genetically implicated in floral induction. Using co-immunoprecipitation, RNA-seq, and chromatin immunoprecipitation sequencing, we show that CHR4 interacts with transcription factors involved in floral meristem identity and affects the expression of key floral regulators. Therefore, CHR4 mediates the response to endogenous flowering pathways in the inflorescence meristem to promote floral identity.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/fisiologia , Proteínas de Ligação a DNA/metabolismo , Meio Ambiente , Flores/genética , Flores/fisiologia , Mutagênese/genética , Mutação/genética , Proteínas de Arabidopsis/genética , DNA Helicases , Proteínas de Ligação a DNA/genética , Regulação da Expressão Gênica de Plantas , Loci Gênicos , Genoma de Planta , Histonas/metabolismo , Meristema/genética , Anotação de Sequência Molecular , Fenótipo , Polimorfismo de Nucleotídeo Único/genética , Ligação Proteica , Fatores de Tempo
4.
Plant Physiol ; 179(1): 38-54, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30401722

RESUMO

Single-molecule full-length complementary DNA (cDNA) sequencing can aid genome annotation by revealing transcript structure and alternative splice forms, yet current annotation pipelines do not incorporate such information. Here we present long-read annotation (LoReAn) software, an automated annotation pipeline utilizing short- and long-read cDNA sequencing, protein evidence, and ab initio prediction to generate accurate genome annotations. Based on annotations of two fungal genomes (Verticillium dahliae and Plicaturopsis crispa) and two plant genomes (Arabidopsis [Arabidopsis thaliana] and Oryza sativa), we show that LoReAn outperforms popular annotation pipelines by integrating single-molecule cDNA-sequencing data generated from either the Pacific Biosciences or MinION sequencing platforms, correctly predicting gene structure, and capturing genes missed by other annotation pipelines.


Assuntos
Genoma de Planta , Anotação de Sequência Molecular/métodos , Software , Genoma Fúngico , Análise de Sequência de DNA
5.
Proc Natl Acad Sci U S A ; 114(2): E245-E254, 2017 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-28028241

RESUMO

Shoot-branching patterns determine key aspects of plant life and are important targets for crop breeding. However, we are still largely ignorant of the genetic networks controlling locally the most important decision during branch development: whether the axillary bud, or branch primordium, grows out to give a lateral shoot or remains dormant. Here we show that, inside the buds, the TEOSINTE BRANCHED1, CYCLOIDEA, PCF (TCP) transcription factor BRANCHED1 (BRC1) binds to and positively regulates the transcription of three related Homeodomain leucine zipper protein (HD-ZIP)-encoding genes: HOMEOBOX PROTEIN 21 (HB21), HOMEOBOX PROTEIN 40 (HB40), and HOMEOBOX PROTEIN 53 (HB53). These three genes, together with BRC1, enhance 9-CIS-EPOXICAROTENOID DIOXIGENASE 3 (NCED3) expression, lead to abscisic acid accumulation, and trigger hormone response, thus causing suppression of bud development. This TCP/HD-ZIP genetic module seems to be conserved in dicot and monocotyledonous species to prevent branching under light-limiting conditions.


Assuntos
Ácido Abscísico/metabolismo , Proteínas de Arabidopsis/genética , Arabidopsis/metabolismo , Dioxigenases/genética , Proteínas de Plantas/genética , Brotos de Planta/metabolismo , Fatores de Transcrição/genética , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Brotos de Planta/genética , Transdução de Sinais , Fatores de Transcrição/metabolismo
6.
BMC Plant Biol ; 18(1): 145, 2018 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-30005624

RESUMO

BACKGROUND: Long non-coding RNAs (lncRNAs) have emerged as new class of regulatory molecules in animals where they regulate gene expression at transcriptional and post-transcriptional level. Recent studies also identified lncRNAs in plant genomes, revealing a new level of transcriptional complexity in plants. Thousands of lncRNAs have been predicted in the Arabidopsis thaliana genome, but only a few have been studied in depth. RESULTS: Here we report the identification of Arabidopsis lncRNAs that are expressed during the vegetative stage of development in either the shoot apical meristem or in leaves. We found that hundreds of lncRNAs are expressed in these tissues, of which 50 show differential expression upon an increase in ambient temperature. One of these lncRNAs, FLINC, is down-regulated at higher ambient temperature and affects ambient temperature-mediated flowering in Arabidopsis. CONCLUSION: A number of ambient temperature responsive lncRNAs were identified with potential roles in the regulation of temperature-dependent developmental changes, such as the transition from the vegetative to the reproductive (flowering) phase. The challenge for the future is to characterize the biological function and molecular mode of action of the large number of ambient temperature-regulated lncRNAs that have been identified in this study.


Assuntos
Arabidopsis/metabolismo , RNA Longo não Codificante/metabolismo , Flores/crescimento & desenvolvimento , Flores/metabolismo , Regulação da Expressão Gênica de Plantas , Meristema/metabolismo , Folhas de Planta/metabolismo , Brotos de Planta/metabolismo , RNA Longo não Codificante/fisiologia , Temperatura
7.
Mol Biol Evol ; 33(1): 185-200, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26429922

RESUMO

Flower development is controlled by the action of key regulatory transcription factors of the MADS-domain family. The function of these factors appears to be highly conserved among species based on mutant phenotypes. However, the conservation of their downstream processes is much less well understood, mostly because the evolutionary turnover and variation of their DNA-binding sites (BSs) among plant species have not yet been experimentally determined. Here, we performed comparative ChIP (chromatin immunoprecipitation)-seq experiments of the MADS-domain transcription factor SEPALLATA3 (SEP3) in two closely related Arabidopsis species: Arabidopsis thaliana and A. lyrata which have very similar floral organ morphology. We found that BS conservation is associated with DNA sequence conservation, the presence of the CArG-box BS motif and on the relative position of the BS to its potential target gene. Differences in genome size and structure can explain that SEP3 BSs in A. lyrata can be located more distantly to their potential target genes than their counterparts in A. thaliana. In A. lyrata, we identified transposition as a mechanism to generate novel SEP3 binding locations in the genome. Comparative gene expression analysis shows that the loss/gain of BSs is associated with a change in gene expression. In summary, this study investigates the evolutionary dynamics of DNA BSs of a floral key-regulatory transcription factor and explores factors affecting this phenomenon.


Assuntos
Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Sítios de Ligação/genética , Proteínas de Homeodomínio/química , Proteínas de Homeodomínio/genética , Fatores de Transcrição/química , Fatores de Transcrição/genética , Sequência de Aminoácidos , Imunoprecipitação da Cromatina , Sequência Conservada , Evolução Molecular , Perfilação da Expressão Gênica , Dados de Sequência Molecular , Alinhamento de Sequência
8.
Nat Rev Genet ; 11(12): 830-42, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21063441

RESUMO

Unlike animals, plants produce new organs throughout their life cycle using pools of stem cells that are organized in meristems. Although many key regulators of meristem and organ identities have been identified, it is still not well understood how they function at the molecular level and how they can switch an entire developmental programme in which thousands of genes are involved. Recent advances in the genome-wide identification of target genes controlled by key plant transcriptional regulators and their interactions with epigenetic factors provide new insights into general transcriptional regulatory mechanisms that control switches of developmental programmes and cell fates in complex organisms.


Assuntos
Regulação da Expressão Gênica de Plantas , Desenvolvimento Vegetal , Plantas/genética , Animais , Meristema/genética , Proteínas de Plantas/metabolismo , Plantas/metabolismo , Fatores de Transcrição/metabolismo
9.
J Exp Bot ; 65(17): 4731-45, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24913630

RESUMO

Successful plant reproduction relies on the perfect orchestration of singular processes that culminate in the product of reproduction: the seed. The floral transition, floral organ development, and fertilization are well-studied processes and the genetic regulation of the various steps is being increasingly unveiled. Initially, based predominantly on genetic studies, the regulatory pathways were considered to be linear, but recent genome-wide analyses, using high-throughput technologies, have begun to reveal a different scenario. Complex gene regulatory networks underlie these processes, including transcription factors, microRNAs, movable factors, hormones, and chromatin-modifying proteins. Here we review recent progress in understanding the networks that control the major steps in plant reproduction, showing how new advances in experimental and computational technologies have been instrumental. As these recent discoveries were obtained using the model species Arabidopsis thaliana, we will restrict this review to regulatory networks in this important model species. However, more fragmentary information obtained from other species reveals that both the developmental processes and the underlying regulatory networks are largely conserved, making this review also of interest to those studying other plant species.


Assuntos
Arabidopsis/fisiologia , Redes Reguladoras de Genes , Arabidopsis/genética , Biologia Computacional , Reprodução
10.
Plant Cell ; 23(8): 2850-63, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21810995

RESUMO

Reproductive organ development is one of the most important steps in the life cycle of plants. Studies using core eudicot species like thale cress (Arabidopsis thaliana) and snapdragon (Antirrhinum majus) have shown that MADS domain transcription factors belonging to the AGAMOUS (AG) subfamily regulate the identity of stamens, carpels, and ovules and that they are important for floral meristem determinacy. Here, we investigate the genetic interactions between the four rice (Oryza sativa) AG subfamily members, MADS3, MADS13, MADS21, and MADS58. Our data show that, in contrast with previous reports, MADS3 and MADS58 determine stamen and carpel identity and, together with MADS13, are important for floral meristem determinacy. In the mads3 mads58 double mutant, we observed a complete loss of reproductive organ identity and massive accumulation of lodicules in the third and fourth floral whorls. MADS21 is an AGL11 lineage gene whose expression is not restricted to ovules. Instead, its expression profile is similar to those of class C genes. However, our genetic analysis shows that MADS21 has no function in stamen, carpel, or ovule identity determination.


Assuntos
Proteínas de Domínio MADS/metabolismo , Oryza/crescimento & desenvolvimento , Oryza/metabolismo , Sequência de Aminoácidos , Sequência de Bases , DNA Complementar/genética , DNA de Plantas/genética , Flores/genética , Flores/crescimento & desenvolvimento , Flores/fisiologia , Flores/ultraestrutura , Regulação da Expressão Gênica de Plantas , Genes de Plantas/genética , Genótipo , Proteínas de Domínio MADS/genética , Meristema/genética , Meristema/crescimento & desenvolvimento , Meristema/metabolismo , Meristema/ultraestrutura , Modelos Genéticos , Dados de Sequência Molecular , Mutação , Oryza/genética , Oryza/ultraestrutura , Óvulo Vegetal/genética , Óvulo Vegetal/crescimento & desenvolvimento , Óvulo Vegetal/metabolismo , Óvulo Vegetal/ultraestrutura , Fenótipo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , RNA de Plantas/genética , Análise de Sequência de DNA , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
11.
Methods Mol Biol ; 1675: 167-181, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29052192

RESUMO

Nucleosomes are the basic repeating units of eukaryotic chromatin. They play important roles in chromatin compaction and gene regulation. Therefore, it is important to profile the in vivo locations of nucleosomes in the genome. Here we illustrate how to profile nucleosome occupancy at genome-wide scale using micrococcal nuclease (MNase) digestion combined with high throughput Illumina sequencing (MNase-seq). Nucleosome-associated DNA is relatively insensitive to digestion by micrococcal nuclease (MNase). Upon mild MNase treatment, the undigested nucleosomal DNA can be purified and sequenced allowing a precise localization of in vivo nucleosomes at a genome-wide level.


Assuntos
Arabidopsis/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Nucleossomos/genética , Análise de Sequência de DNA/métodos , Mapeamento Cromossômico , Biologia Computacional/métodos , DNA de Plantas , Regulação da Expressão Gênica de Plantas , Nuclease do Micrococo/metabolismo
12.
Trends Plant Sci ; 21(1): 6-8, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26698930

RESUMO

It is challenging to understand how plants adapt flowering time to novel environmental conditions, such as global warming, while maintaining plasticity in response to daily fluctuating temperatures. A recent study shows a role for transposons and highlights the need to investigate how these different responses evolved.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Flores/genética , Proteínas de Domínio MADS/genética , Mutagênese Insercional/genética
13.
Curr Opin Plant Biol ; 27: 97-103, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26190743

RESUMO

Developmental plasticity enables plants to respond rapidly to changing environmental conditions, such as temperature fluctuations. Understanding how plants measure temperature and integrate this information into developmental programs at the molecular level will be essential to breed thermo-tolerant crop varieties. Recent studies identified alternative splicing (AS) as a possible 'molecular thermometer', allowing plants to quickly adjust the abundance of functional transcripts to environmental perturbations. In this review, recent advances regarding the effects of temperature-responsive AS on plant development will be discussed, with emphasis on the circadian clock and flowering time control. The challenge for the near future will be to understand the molecular mechanisms by which temperature can influence AS regulation.


Assuntos
Processamento Alternativo , Regulação da Expressão Gênica de Plantas , Genes Reguladores , Desenvolvimento Vegetal , Proteínas de Plantas/genética , Relógios Circadianos , Flores/genética , Flores/crescimento & desenvolvimento , Proteínas de Plantas/metabolismo , Temperatura
14.
Methods Mol Biol ; 1284: 93-121, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25757769

RESUMO

Chromatin immunoprecipitation followed by next-generation sequencing (ChIP-seq) is a powerful technique for genome-wide identification of in vivo binding sites of DNA-binding proteins. The technique had been used to study many DNA-binding proteins in a broad variety of species. The basis of the ChIP-seq technique is the ability to covalently cross-link DNA and proteins that are located in very close proximity. This allows the use of an antibody against the (tagged) protein of interest to specifically enrich DNA-fragments bound by this protein. ChIP-seq can be performed using antibodies against the native protein or against tagged proteins. Using a specific antibody against a tag to immunoprecipitate tagged proteins eliminates the need for a specific antibody against the native protein and allows more experimental flexibility. In this chapter we present a complete workflow for experimental procedure and bioinformatic analysis that allows wet-lab biologists to perform and analyze ChIP-seq experiments.


Assuntos
Imunoprecipitação da Cromatina , DNA de Plantas/genética , DNA de Plantas/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala , Plantas/genética , Plantas/metabolismo , Fatores de Transcrição/metabolismo , Sítios de Ligação , Imunoprecipitação da Cromatina/métodos , Biologia Computacional/métodos , Biblioteca Genômica , Genômica/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Reação em Cadeia da Polimerase , Ligação Proteica , Controle de Qualidade , Reprodutibilidade dos Testes
15.
Genome Biol ; 15(3): R41, 2014 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-24581456

RESUMO

BACKGROUND: Development of eukaryotic organisms is controlled by transcription factors that trigger specific and global changes in gene expression programs. In plants, MADS-domain transcription factors act as master regulators of developmental switches and organ specification. However, the mechanisms by which these factors dynamically regulate the expression of their target genes at different developmental stages are still poorly understood. RESULTS: We characterized the relationship of chromatin accessibility, gene expression, and DNA binding of two MADS-domain proteins at different stages of Arabidopsis flower development. Dynamic changes in APETALA1 and SEPALLATA3 DNA binding correlated with changes in gene expression, and many of the target genes could be associated with the developmental stage in which they are transcriptionally controlled. We also observe dynamic changes in chromatin accessibility during flower development. Remarkably, DNA binding of APETALA1 and SEPALLATA3 is largely independent of the accessibility status of their binding regions and it can precede increases in DNA accessibility. These results suggest that APETALA1 and SEPALLATA3 may modulate chromatin accessibility, thereby facilitating access of other transcriptional regulators to their target genes. CONCLUSIONS: Our findings indicate that different homeotic factors regulate partly overlapping, yet also distinctive sets of target genes in a partly stage-specific fashion. By combining the information from DNA-binding and gene expression data, we are able to propose models of stage-specific regulatory interactions, thereby addressing dynamics of regulatory networks throughout flower development. Furthermore, MADS-domain TFs may regulate gene expression by alternative strategies, one of which is modulation of chromatin accessibility.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Montagem e Desmontagem da Cromatina , Cromatina/metabolismo , Flores/crescimento & desenvolvimento , Proteínas de Homeodomínio/metabolismo , Proteínas de Domínio MADS/metabolismo , Fatores de Transcrição/metabolismo , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Cromatina/genética , Flores/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Proteínas de Homeodomínio/genética , Proteínas de Domínio MADS/genética , Ligação Proteica , Fatores de Transcrição/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA