Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Environ Sci Technol ; 52(18): 10286-10296, 2018 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-30169032

RESUMO

Pyrite (cubic FeS2) is the most abundant metal sulfide in nature and also the main host mineral of toxic mercury (Hg). Release of mercury in acid mine drainage resulting from the oxidative dissolution of pyrite in coal and ore and rock resulting from mining, processing, waste management, reclamation, and large construction activities is an ongoing environmental challenge. The fate of mercury depends on its chemical forms at the point source, which in turn depends on how it occurs in pyrite. Here, we show that pyrite in coal, sedimentary rocks, and hydrothermal ore deposits can host varying structural forms of Hg which can be identified with high energy-resolution XANES (HR-XANES) spectroscopy. Nominally divalent Hg is incorporated at the Fe site in pyrite from coal and at a marcasite-type Fe site in pyrite from sedimentary rocks. Distinction of the two Hg bonding environments offers a mean to detect microscopic marcasite inclusions (orthorhombic FeS2) in bulk pyrite. In epigenetic pyrite from Carlin-type Au deposit, up to 55 ± 6 at. % of the total Hg occurs as metacinnabar nanoparticles (ß-HgSNP), with the remainder being substitutional at the Fe site. Pyritic mercury from Idrija-type Hg deposit (α-HgS ore) is partly divalent and substitutional and partly reduced into elemental form (liquid). Divalent mercury ions, mercury sulfide nanoparticles, and elemental mercury released by the oxidation of pyrite in acid mine drainage settings would have different environmental pathways. Our results could find important applications for designing control strategies of mercury released to land and water in mine-impacted watersheds.


Assuntos
Mercúrio , Ferro , Mineração , Sulfetos
2.
ACS Eng Au ; 4(1): 125-138, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38405365

RESUMO

Direct reduction of chromite (DRC) is a promising alternative process for ferrochrome production with the potential to significantly reduce energy consumption and greenhouse gas emissions compared to conventional smelting. In DRC, chromium (Cr) and iron (Fe) from chromite ore incongruently dissolve into a molten salt, which facilitates mass transfer to a carbon (C) reductant where in situ metallization occurs. Consequently, ferrochrome is produced below the slag melting temperatures, achieving substantial energy savings relative to smelting. However, there are significant knowledge gaps in the kinetics, Cr solubility, speciation, and coordination environment which are critical to understanding the fundamental mechanisms of molten salt-assisted carbothermic reactions. To address these knowledge gaps, we performed pyrometallurgical experiments with variable temperature and residence times and analyzed the composition of chromite, ferrochrome, and slag products along with determining the speciation of Cr. Our results indicate that the DRC mechanism can be explained by the following sequential steps: (1) incongruent dissolution of chromite, (2) reduction of dissolved Cr in molten salt/slag, (3) transport of Cr and Fe species in molten media, and (4) reduction on C particles and metallization as Cr-Fe alloys. The discovery of four types of reduced Cr species in the slag indicates that the reduction of Cr3+ to Cr2+ and Cr0 occurred in the molten phase before metallization on solid carbon particles. Thermodynamically, the reduction of CrO(l) to Cr metal is more feasible at a lower temperature than it is for Cr2O3(l) corroborating the accelerated reduction efficiency of the DRC process.

3.
J Hazard Mater ; 466: 133554, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38246057

RESUMO

Over the past 100 years, extensive oxidation of As-bearing sulfide-rich tailings from the abandoned Long Lake Gold Mine (Canada) has resulted in the formation of acid mine drainage (pH 2.0-3.9) containing high concentrations of dissolved As (∼400 mg L-1), SO42-, Fe and other metals. Dissolved As is predominantly present as As(III), with increased As(V) near the tailings surface. Pore-gas O2 is depleted to < 1 vol% in the upper 30-80 cm of the tailings profile. The primary sulfides, pyrite and arsenopyrite, are highly oxidized in the upper portions of the tailings. Elevated proportions of sulfide-oxidizing prokaryotes are present in this zone (mean 32.3% of total reads). The tailings are underlain by sediments rich in organic C. Enrichment in δ34S-SO4 in pore-water samples in the organic C-rich zone is consistent with dissimilatory sulfate reduction. Synchrotron-based spectroscopy indicates an abundance of ferric arsenate phases near the impoundment surface and the presence of secondary arsenic sulfides in the organic-C beneath the tailings. The persistence of elevated As concentrations beneath the tailings indicates precipitation of secondary As sulfides is not sufficient to completely remove dissolved As. The oxidation of sulfides and release of As is expected to continue for decades. The findings will inform future remediation efforts and provide a foundation for the long-term monitoring of the effectiveness of the remediation program.

4.
J Hazard Mater ; 422: 126873, 2022 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-34418832

RESUMO

Dusts generated during ferrochrome smelting in a pilot-scale DC arc furnace were sampled from the furnace freeboard and from the off-gas handling stream (cyclone and baghouse). The dusts comprise fine-grained feed material (chromite, flux, and reductant); compositionally heterogeneous, glassy micro-spherules, interpreted as gas condensates and/or aerosolized melt droplets; and trace amounts of ferrochrome. Synchrotron-based micro-X-ray-fluorescence and micro-X-ray absorption near-edge structure around the chromium (Cr) K-edge was used to identify the distribution and speciation of Cr in dust particulates from the freeboard and the cyclone. The dust samples contain Cr in multiple oxidation states, including Cr(0) (hosted by ferrochrome), Cr(III), and Cr(VI). The majority of Cr occurs as Cr(III) in chromite. In both the furnace-freeboard and the cyclone dusts, Cr(VI) was consistently associated with the Si-Ca-Mg-rich micro-spherules. A major finding of this study is that Cr oxidation and Cr(VI) formation can occur in aerosolized dusts within the closed DC-arc furnace during ferrochrome smelting under conditions that are deemed to be essentially reducing. The association of Cr(VI) with the micro-spherules forwards the hypothesis that the high temperature of the furnace off-gasses and the flux composition influence the likelihood of Cr(VI) formation within a closed furnace under open-bath smelting conditions.


Assuntos
Cromo , Poeira , Carvão Mineral , Poeira/análise , Oxirredução , Síncrotrons
5.
J Hazard Mater ; 412: 125130, 2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-33529829

RESUMO

Galena and Pb-bearing secondary phases are the main sources of Pb in the terrestrial environment. Oxidative dissolution of galena releases aqueous Pb and SO4 to the surficial environment and commonly causes the formation of anglesite (in acidic environments) or cerussite (in alkaline environments). However, conditions prevalent in weathering environments are diverse and different reaction mechanisms reflect this variability at various scales. Here we applied complementary techniques across a range of scales, from nanometers to 10 s of meters, to study the oxidation of galena and accumulation of secondary phases that influence the release and mobilization of Pb within a sulfide-bearing waste-rock pile. Within the neutral-pH pore-water environment, the oxidation of galena releases Pb ions resulting in the formation of secondary Pb-bearing carbonate precipitates. Cerussite is the dominant phase and shannonite is a possible minor phase. Dissolved Cu from the pore water reacts at the surface of galena, forming covellite at the interface. Nanometer scale characterization suggests that secondary covellite is intergrown with secondary Pb-bearing carbonates at the interface. A small amount of the S derived from galena is sequestered with the secondary covellite, but the majority of the S is oxidized to sulfate and released to the pore water.

6.
Environ Pollut ; 267: 115396, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32882459

RESUMO

This study evaluated three biochars derived from bioenergy by-products - manure-based anaerobic digestate (DIG), distillers' grains (DIS), and a mixture thereof (75G25S) - as amendments to stabilize Hg in contaminated floodplain soil under long-term saturated (up to 200 d) and cyclic drying and rewetting conditions. Greater total Hg (THg) removal (72 to nearly 100%) and limited MeHg production (<65 ng L-1) were observed in digestate-based biochar-amended systems under initial saturated conditions. Drying and rewetting resulted in limited THg release, increased aqueous MeHg, and decreased solid MeHg in digestate-based biochar-amended systems. Changes in Fe and S chemistry as well as microbial communities during drying and rewetting potentially affected MeHg production. Digestate-based biochars may be more effective as amendments to control Hg release and minimize MeHg production in floodplain soils under long-term saturated and drying and rewetting conditions compared to distillers' grains biochar.


Assuntos
Mercúrio , Compostos de Metilmercúrio , Poluentes do Solo , Carvão Vegetal , Etanol , Mercúrio/análise , Solo , Poluentes do Solo/análise
7.
Sci Total Environ ; 712: 136018, 2020 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-32050399

RESUMO

Periodic flooding and drying conditions in floodplains affect the mobility and bioavailability of Hg in aquatic sediments and surrounding soils. Sulfurized materials have been recently proposed as Hg sorbents due to their high affinity to bind Hg, while sulfurizing organic matter may enhance methylmercury (MeHg) production, offsetting the beneficial aspects of these materials. This study evaluated hardwood biochar (OAK) and sulfurized-hardwood biochar (MOAK) as soil amendments for controlling Hg release in a contaminated floodplain soil under conditions representative of periodic flooding and drying in microcosm experiments in three stages: (1) wet biochar amended-systems with river water in an anoxic environment up to 200 d; (2) dry selected reaction vessels in an oxic environment for 90 d; (3) rewet such vessels with river water in an anoxic environment for 90 d. In Stage 1, greater Hg removal (17-98% for unfiltered total Hg (THg) and 47-99% for 0.45-µm THg) and lower MeHg concentrations (<20 ng L-1) were observed in MOAK-amended systems (10%MOAKs). In Stage 3, release of Hg in 10%MOAKs was eight-fold lower than in soil controls (SedCTRs), while increases in aqueous (up to 21 ng L-1) and solid (up to 88 ng g-1) MeHg concentrations were observed. The increases in MeHg corresponded to elevated aqueous concentrations of Mn, Fe, SO42-, and HS- in Stage 3. Results of S K-edge X-ray absorption near edge structure (XANES) analysis suggest oxidation of S in Stage 2 and formation of polysulfur in Stage 3. Results of pyrosequencing analysis indicate sulfate-reducing bacteria (SRB) became abundant in Stage 3 in 10%MOAKs. The shifts in biogeochemical conditions in 10%MOAKs in Stage 3 may increase the bioavailability of Hg to methylating bacteria. The results suggest limited impacts on Hg removal during drying and rewetting, while changes in biogeochemical conditions may affect MeHg production in sulfurized biochar-amended systems.


Assuntos
Mercúrio/isolamento & purificação , Carvão Vegetal , Compostos de Metilmercúrio , Rios , Solo , Poluentes Químicos da Água
9.
J Synchrotron Radiat ; 11(Pt 3): 295-8, 2004 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-15103119

RESUMO

LSFitXAFS is a computer program designed to calculate fractions of individual components (i.e. individual species, minerals, compounds or chemical environments) making up bulk XAFS spectra. The program performs Gaussian elimination and multiple linear regression techniques to simultaneously solve mass balance equations. In addition, the program contains a number of data reduction and analysis routines including the determination of random and systematic noise in Fourier-transformed spectra and calculation of the goodness-of-fit parameters for different combinations of shells.

10.
Environ Sci Technol ; 37(10): 2067-74, 2003 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-12785509

RESUMO

Ketza River mine tailings deposited underwater and those exposed near the tailings impoundment contain approximately 4 wt % As. Column-leaching tests indicated the potential for high As releases from the tailings. The tailings are composed dominantly of iron oxyhydroxides, quartz, calcite, dolomite, muscovite, ferric arsenates, and calcium-iron arsenates. Arsenopyrite and pyrite are trace constituents. Chemical compositions of iron oxyhydroxide and arsenate minerals are highly variable. The XANES spectra indicate that arsenic occurs as As(V) in tailings, but air-drying prior to analysis may have oxidized lower-valent As. The EXAFS spectra indicate As-Fe distances of 3.35-3.36 A for the exposed tailings and 3.33-3.35 A for the saturated tailings with coordination numbers of 0.96-1.11 and 0.46-0.64, respectively. The As-Ca interatomic distances ranging from 4.15 to 4.18 A and the coordination numbers of 4.12-4.58 confirm the presence of calcium-iron arsenates in the tailings. These results suggest that ferric arsenates and inner-sphere corner sharing or bidentate-binuclear attachment of arsenate tetrahedra onto iron hydroxide octahedra are the dominant form of As in the tailings. EXAFS spectra indicate that the exposed tailings are richer in arsenate minerals whereas the saturated tailings are dominated by the iron oxyhydroxides, which could help explain the greater release of As from the exposed tailings during leaching tests. It is postulated that the dissolution of ferric arsenates during flow-through experiments caused the high As releases from both types of tailings. Arsenic tied to iron oxyhydroxides as adsorbed species are considered stable; however, iron oxyhydroxides having low Fe/As molar ratios may not be as stable. Continued As releases from the tailings are likely due to dissolution of both ferric and calcium-iron arsenates and desorption of As from high-As bearing iron oxyhydroxides during aging.


Assuntos
Arseniatos/análise , Água Doce/química , Mineração , Poluentes Químicos da Água/análise , Ouro , Microscopia Eletrônica de Varredura , Análise Espectral , Difração de Raios X , Raios X , Yukon
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA