RESUMO
The desire to reach ever-diminishing lower limits of quantification (LLOQ) to probe changes in low abundance protein targets has led to enormous progress in sample preparation and liquid chromatography-tandem mass spectrometry (LC-MS/MS) instrumentation. To maximize signal and reduce noise, many approaches have been employed, including specific immunoaffinity (IA) enrichment and reducing the LC flow to the nanoflow (nLC) level; however, additional sensitivity gains may still be required. Recently, a technique termed "echo summing" has been described for small-molecular-weight analytes on a triple quadrupole (QqQ) MS where multiple iterations of the same, single selected reaction monitoring (SRM) transition are collected, summed, and integrated, yielding significant analyte dependent signal-to-noise (S/N) improvements. Herein, the direct applicability of echo summing to protein quantification by sequential IA combined with nLC-MS/MS (IA-nLC-MS/MS) is described for a beta nerve growth factor (NGF) and a soluble asialoglycoprotein receptor (sASGPR) assay from human serum. Five iterations of echo summing outperformed traditional collection in relative average accuracy (-1.5 ± 7.7 vs -41.7 ± 10.7% bias) and precision (7.8 vs 18.4% coefficient of variation (CV)) of the low-end quality control (QC) sample (N = 4) for NGF and improved functional sensitivity of serially diluted serum QC samples (N = 5 each population) approximately 2-fold (1.96 and 2.00-fold) for two peptides of sASGPR. Echo summing also extended the minimum quantifiable QC level for sASGPR 4-fold lower. Similar gains are believed to be achievable for most protein IA-nLC-MS/MS assays.
Assuntos
Espectrometria de Massas em Tandem , Humanos , Espectrometria de Massas em Tandem/métodos , Cromatografia de Afinidade/métodos , Fator de Crescimento Neural/análise , Cromatografia Líquida/métodos , Limite de DetecçãoRESUMO
Duchenne muscular dystrophy (DMD) is a lethal, degenerative muscle disorder caused by mutations in the DMD gene, leading to severe reduction or absence of the protein dystrophin. Gene therapy strategies that aim to increase expression of a functional dystrophin protein (mini-dystrophin) are under investigation. The ability to accurately quantify dystrophin/mini-dystrophin is essential in assessing the level of gene transduction. We demonstrated the validation and application of a novel peptide immunoaffinity liquid chromatography-tandem mass spectrometry (IA-LC-MS/MS) assay. Data showed that dystrophin expression in Becker muscular dystrophy and DMD tissues, normalized against the mean of non-dystrophic control tissues (n = 20), was 4-84.5% (mean 32%, n = 20) and 0.4-24.1% (mean 5%, n = 20), respectively. In a DMD rat model, biceps femoris tissue from dystrophin-deficient rats treated with AAV9.hCK.Hopti-Dys3978.spA, an adeno-associated virus vector containing a mini-dystrophin transgene, showed a dose-dependent increase in mini-dystrophin expression at 6 months post-dose, exceeding wildtype dystrophin levels at high doses. Validation data showed that inter- and intra-assay precision were ≤20% (≤25% at the lower limit of quantification [LLOQ]) and inter- and intra-run relative error was within ±20% (±25% at LLOQ). IA-LC-MS/MS accurately quantifies dystrophin/mini-dystrophin in human and preclinical species with sufficient sensitivity for immediate application in preclinical/clinical trials.
Assuntos
Distrofina , Distrofia Muscular de Duchenne , Humanos , Ratos , Animais , Distrofina/genética , Distrofina/metabolismo , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/terapia , Cromatografia Líquida , Espectrometria de Massas em Tandem , Músculo Esquelético/metabolismo , Terapia Genética/métodosRESUMO
The fortuitously discovered antiaging membrane protein αKlotho (Klotho) is highly expressed in the kidney, and deletion of the Klotho gene in mice causes a phenotype strikingly similar to that of chronic kidney disease (CKD). Klotho functions as a co-receptor for fibroblast growth factor 23 (FGF23) signaling, whereas its shed extracellular domain, soluble Klotho (sKlotho), carrying glycosidase activity, is a humoral factor that regulates renal health. Low sKlotho in CKD is associated with disease progression, and sKlotho supplementation has emerged as a potential therapeutic strategy for managing CKD. Here, we explored the structure-function relationship and post-translational modifications of sKlotho variants to guide the future design of sKlotho-based therapeutics. Chinese hamster ovary (CHO)- and human embryonic kidney (HEK)-derived WT sKlotho proteins had varied activities in FGF23 co-receptor and ß-glucuronidase assays in vitro and distinct properties in vivo Sialidase treatment of heavily sialylated CHO-sKlotho increased its co-receptor activity 3-fold, yet it remained less active than hyposialylated HEK-sKlotho. MS and glycopeptide-mapping analyses revealed that HEK-sKlotho is uniquely modified with an unusual N-glycan structure consisting of N,N'-di-N-acetyllactose diamine at multiple N-linked sites, one of which at Asn-126 was adjacent to a putative GalNAc transfer motif. Site-directed mutagenesis and structural modeling analyses directly implicated N-glycans in Klotho's protein folding and function. Moreover, the introduction of two catalytic glutamate residues conserved across glycosidases into sKlotho enhanced its glucuronidase activity but decreased its FGF23 co-receptor activity, suggesting that these two functions might be structurally divergent. These findings open up opportunities for rational engineering of pharmacologically enhanced sKlotho therapeutics for managing kidney disease.
Assuntos
Glucuronidase/metabolismo , Insuficiência Renal Crônica/patologia , Animais , Células CHO , Domínio Catalítico , Cromatografia Líquida de Alta Pressão , Cricetinae , Cricetulus , Fator de Crescimento de Fibroblastos 23 , Taxa de Filtração Glomerular/efeitos dos fármacos , Glucuronidase/química , Glucuronidase/genética , Glicopeptídeos/análise , Células HEK293 , Meia-Vida , Humanos , Proteínas Klotho , Espectrometria de Massas , Mutagênese Sítio-Dirigida , Processamento de Proteína Pós-Traducional , Ratos , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/farmacologia , Proteínas Recombinantes/uso terapêutico , Insuficiência Renal Crônica/metabolismo , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/patologia , Traumatismo por Reperfusão/veterinária , Relação Estrutura-AtividadeRESUMO
The 17th Workshop on Recent Issues in Bioanalysis (17th WRIB) took place in Orlando, FL, USA on June 19-23, 2023. Over 1000 professionals representing pharma/biotech companies, CROs, and multiple regulatory agencies convened to actively discuss the most current topics of interest in bioanalysis. The 17th WRIB included 3 Main Workshops and 7 Specialized Workshops that together spanned 1 week to allow an exhaustive and thorough coverage of all major issues in bioanalysis of biomarkers, immunogenicity, gene therapy, cell therapy and vaccines.Moreover, in-depth workshops on "EU IVDR 2017/746 Implementation and impact for the Global Biomarker Community: How to Comply with this NEW Regulation" and on "US FDA/OSIS Remote Regulatory Assessments (RRAs)" were the special features of the 17th edition.As in previous years, WRIB continued to gather a wide diversity of international, industry opinion leaders and regulatory authority experts working on both small and large molecules as well as gene, cell therapies and vaccines to facilitate sharing and discussions focused on improving quality, increasing regulatory compliance, and achieving scientific excellence on bioanalytical issues.This 2023 White Paper encompasses recommendations emerging from the extensive discussions held during the workshop and is aimed to provide the bioanalytical community with key information and practical solutions on topics and issues addressed, in an effort to enable advances in scientific excellence, improved quality and better regulatory compliance. Due to its length, the 2023 edition of this comprehensive White Paper has been divided into three parts for editorial reasons.This publication covers the recommendations on Mass Spectrometry Assays, Regulated Bioanalysis/BMV (Part 1A) and Regulatory Inputs (Part 1B). Part 2 (Biomarkers, IVD/CDx, LBA and Cell-Based Assays) and Part 3 (Gene Therapy, Cell therapy, Vaccines and Biotherapeutics Immunogenicity) are published in volume 16 of Bioanalysis, issues 7 and 8 (2024), respectively.
Assuntos
Biomarcadores , Terapia Baseada em Transplante de Células e Tecidos , Proteômica , Humanos , Biomarcadores/análise , Cromatografia/métodos , Terapia Genética , Espectrometria de Massas/métodos , Proteômica/métodosRESUMO
A highly specific and sensitive immunoaffinity LC-MS/MS assay for quantification of human and cynomolgus monkey interleukin 21 (IL-21) was developed, qualified, and implemented. The workflow includes offline enrichment of IL-21 using an anti-IL-21 capture antibody, followed by isolation using magnetic beads, trypsin digestion, online enrichment of IL-21 derived tryptic peptides using antipeptide antibodies, and quantification using nanoflow LC-MS/MS. This assay was developed and qualified in human and cynomolgus monkey serum and tissues with a lower limit of quantitation of 0.78 pg/mL based on the intact cytokine. Both intra- and interbatch precision and accuracy, as well as stability and recovery, were found to be acceptable. IL-21 was not detected in serum from normal healthy volunteers or from autoimmune disease patients. However, IL-21 levels were quantified in cynomolgus monkey spleen and colon tissue and normal and inflammatory bowel disease (IBD) human colon tissue as well as hyperplasia human tonsils.
Assuntos
Cromatografia de Afinidade , Cromatografia Líquida/métodos , Separação Imunomagnética , Interleucinas/análise , Fragmentos de Peptídeos/análise , Espectrometria de Massas em Tandem/métodos , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/metabolismo , Proteínas Sanguíneas/análise , Estudos de Casos e Controles , Colo/metabolismo , Humanos , Doenças Inflamatórias Intestinais/metabolismo , Interleucinas/imunologia , Macaca fascicularis , Tonsila Palatina/metabolismo , Proteínas Recombinantes/metabolismo , Sensibilidade e Especificidade , Baço/metabolismo , Tripsina/metabolismoRESUMO
ß-Nerve growth factor (NGF) is a neurotrophin that plays a critical role in fetal development during gestation. ProNGF is the precursor form of NGF with a distinct biological profile. In order to investigate the role of NGF and proNGF in pregnant human females, a sensitive and selective immunoaffinity liquid chromatography-tandem mass spectrometry assay was developed and qualified to simultaneously measure the levels of total NGF (tNGF; sum of mature and proNGF) and proNGF using full and relative quantification strategies, respectively. The assay was used to determine serum tNGF and proNGF levels in the three gestational trimesters of pregnancy and in non-pregnant female controls. Mean tNGF ± SD were 44.6 ± 12.3, 42.6 ± 9.3, 65.4 ± 17.6 and 77.0 ± 17.8 pg/mL for non-pregnant, first, second, and third trimesters, respectively, demonstrating no significant increase in circulating tNGF between the control and the first trimester, and a moderate yet significant 1.7-fold increase through gestation. proNGF levels during the first trimester were unchanged compared to control. In contrast to tNGF, however, proNGF levels during gestation remained stable without significant changes. The development of this sensitive, novel immunoaffinity duplexed assay for both tNGF and proNGF is expected to enable further elucidation of the roles these neurotrophins play in human pregnancy as well as other models.
Assuntos
Fator de Crescimento Neural , Espectrometria de Massas em Tandem , Gravidez , Humanos , Feminino , Fator de Crescimento Neural/metabolismo , Cromatografia LíquidaRESUMO
Fatty acid amide hydrolase (FAAH) is one of the main enzymes responsible for the degradation of the endocannabinoid anandamide (N-arachidonoylethanolamine, AEA). FAAH inhibitors may be useful in treating many disorders involving inflammation and pain. Although brain FAAH may be the relevant target for inhibition, rat studies show a correlation between blood and brain FAAH inhibition, allowing blood FAAH activity to be used as a target biomarker. Building on experience with a rat leukocyte FAAH activity assay using [³H]AEA, we have developed a human leukocyte assay using stably labeled [²H4]AEA as substrate. The deuterium-labeled ethanolamine reaction product ([²H4]EA) was analyzed by high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) in the positive electrospray ionization (ESI) mode. The response for [²H4]EA was linear from 10 nM to 10 µM, and the analysis time was less than 6 min/sample. Results using the [²H4]AEA and HPLC-MS/MS method agreed well with those obtained using the [³H]AEA radiometric assay. In addition to using a nonradioactive substrate, the HPLC-MS/MS method had increased sensitivity with lower background. Importantly, the assay preserved partial FAAH inhibition resulting from ex vivo treatment with a time-dependent irreversible inhibitor, suggesting its utility with clinical samples. The assay has been used to profile the successful inhibition of FAAH in recent clinical trials.
Assuntos
Amidoidrolases/sangue , Cromatografia Líquida de Alta Pressão/métodos , Leucócitos/enzimologia , Espectrometria de Massas por Ionização por Electrospray/métodos , Espectrometria de Massas em Tandem/métodos , Amidoidrolases/antagonistas & inibidores , Biomarcadores/sangue , HumanosRESUMO
Immunoaffinity mass spectrometry (IA-MS) is a powerful analytical technique for the determination of protein biomarkers with high sensitivity and unparalleled specificity. Typically, the protein antigen of interest is captured from biofluids and tissue lysates using an antibody prior to mass spectrometric analysis. Here we describe the specific steps of the protein immunoaffinity component of the IA-MS workflow that is applicable to most protein antigens.
Assuntos
Anticorpos , Proteínas , Anticorpos/química , Antígenos , Biomarcadores/análise , Espectrometria de Massas/métodos , Proteínas/análiseRESUMO
The 15th edition of the Workshop on Recent Issues in Bioanalysis (15th WRIB) was held on 27 September to 1 October 2021. Even with a last-minute move from in-person to virtual, an overwhelmingly high number of nearly 900 professionals representing pharma and biotech companies, contract research organizations (CROs), and multiple regulatory agencies still eagerly convened to actively discuss the most current topics of interest in bioanalysis. The 15th WRIB included 3 Main Workshops and 7 Specialized Workshops that together spanned 1 week in order to allow exhaustive and thorough coverage of all major issues in bioanalysis, biomarkers, immunogenicity, gene therapy, cell therapy and vaccines. Moreover, in-depth workshops on biomarker assay development and validation (BAV) (focused on clarifying the confusion created by the increased use of the term "Context of Use - COU"); mass spectrometry of proteins (therapeutic, biomarker and transgene); state-of-the-art cytometry innovation and validation; and, critical reagent and positive control generation were the special features of the 15th edition. This 2021 White Paper encompasses recommendations emerging from the extensive discussions held during the workshop, and is aimed to provide the bioanalytical community with key information and practical solutions on topics and issues addressed, in an effort to enable advances in scientific excellence, improved quality and better regulatory compliance. Due to its length, the 2021 edition of this comprehensive White Paper has been divided into three parts for editorial reasons. This publication (Part 1A) covers the recommendations on Endogenous Compounds, Small Molecules, Complex Methods, Regulated Mass Spec of Large Molecules, Small Molecule, PoC. Part 1B covers the Regulatory Agencies' Inputs on Bioanalysis, Biomarkers, Immunogenicity, Gene & Cell Therapy and Vaccine. Part 2 (ISR for Biomarkers, Liquid Biopsies, Spectral Cytometry, Inhalation/Oral & Multispecific Biotherapeutics, Accuracy/LLOQ for Flow Cytometry) and Part 3 (TAb/NAb, Viral Vector CDx, Shedding Assays; CRISPR/Cas9 & CAR-T Immunogenicity; PCR & Vaccine Assay Performance; ADA Assay Comparabil ity & Cut Point Appropriateness) are published in volume 14 of Bioanalysis, issues 10 and 11 (2022), respectively.
Assuntos
Vesículas Extracelulares , Vacinas , Biomarcadores/análise , Terapia Baseada em Transplante de Células e Tecidos , Vesículas Extracelulares/química , Humanos , Espectrometria de Massas/métodos , NanomedicinaRESUMO
Quantitative modeling is increasingly utilized in the drug discovery and development process, from the initial stages of target selection, through clinical studies. The modeling can provide guidance on three major questions-is this the right target, what are the right compound properties, and what is the right dose for moving the best possible candidate forward. In this manuscript, we present a site-of-action modeling framework which we apply to monoclonal antibodies against soluble targets. We give a comprehensive overview of how we construct the model and how we parametrize it and include several examples of how to apply this framework for answering the questions postulated above. The utilities and limitations of this approach are discussed.
RESUMO
Drug-induced liver injury (DILI) is the most frequent cause of discontinuation of new chemical entities during development. DILI can either be intrinsic/predictable or an idiosyncratic type. These two forms of DILI are contrasted in their manifestation and diagnosis. Even with regulatory guidance (FDA, 2009), there is still a gap in our ability to identify predictable DILI, both specifically and sensitively. Alanine aminotransferase (ALT) is the principal reference standard biomarker to diagnose DILI, yet its current application in preclinical to clinical translation for decision-making purposes has imperfections: (1) analytical ALT assay uniformity across industry would be aided by common analytical processes; (2) assessment of ALT toxicological performance in a large preclinical analysis would help to establish a true threshold of elevation for predictable DILI and improve translational use across various stages of pharmaceutical development and finally, (3) clinical evaluation of ALT elevations prospectively and retrospectively is recommended to define and manage variations in clinical study subjects including rising body mass index (BMI) range and ALT upper limit of normal (ULN) in the broader population over time. The emergence of new hepatotoxicity biomarkers necessitates a parallel and equivalent assessment to the aminotransferases in a regulatory qualification model.
Assuntos
Alanina Transaminase/normas , Doença Hepática Induzida por Substâncias e Drogas/diagnóstico , Alanina Transaminase/metabolismo , Biomarcadores/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/enzimologia , Humanos , Padrões de ReferênciaRESUMO
In the present study, capillary liquid chromatography (LC) nano electrospray ionization quadruple time-of-flight (nano-ESI-Q-TOF) mass spectrometry was utilized to identify the unique proteotypic peptides for liquid chromatography-tandem mass spectrometry (LC-MS/MS) mediated breast cancer resistance protein (BCRP/ABCG2) and bile salt export pump (BSEP/ABCG11) quantification, using insect membrane vesicles overexpressing the proteins. The lower limit of quantification was established to be 31.25 pM and 125 nM for BCRP/ABCG2 and BSEP/ABCG11, respectively. The linearity of standard curves was up to 5000 pM. The accuracy and precision of the LC-MS/MS method were evaluated by adding the known amount of synthetic proteotypic peptide or synthetic surrogate peptide substrates in the membrane protein extracts of livers or hepatocytes. The overall relative error (RE) and coefficient of variation (CV) were below 15.9% and 14.2% for BCRP/ABCG2 quantification or below 15.6% and 6.4% for BSEP/ABCG11, respectively. The absolute differences of BCRP/Bcrp and BSEP/Bsep proteins were determined in livers and isolated hepatocytes across species by the newly developed LC-MS/MS methods, with ranking order of dog > rat > monkey approximately = human and rat approximately = monkey > dog approximately = human, respectively (where the uppercase letters identify the human protein, i.e., BSEP and BCRP, and lowercase letters indicate that the transporter derives from a preclinical species, i.e., Bsep and Bcrp). The freshly isolated and cryopreserved hepatocytes conserved the protein levels of BSEP/Bsep and BCRP/Bcrp similarly to those found in liver tissue. We report, for the first time, an absolution quantification method for BCRP/Bcrp and BSEP/Bsep and the differences of the protein expressions across species. The results could serve as supportive information for extrapolation of hepatobiliary elimination from preclinical species to human.
Assuntos
Transportadores de Cassetes de Ligação de ATP/análise , Cromatografia Líquida de Alta Pressão/métodos , Hepatócitos/metabolismo , Fígado/metabolismo , Espectrometria de Massas por Ionização por Electrospray/métodos , Membro 11 da Subfamília B de Transportadores de Cassetes de Ligação de ATP , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP/metabolismo , Sequência de Aminoácidos , Animais , Neoplasias da Mama/metabolismo , Cães , Feminino , Haplorrinos , Humanos , Proteínas de Neoplasias/análise , Proteínas de Neoplasias/metabolismo , Ratos , Espectrometria de Massas em Tandem , Tripsina/metabolismoRESUMO
The 2019 13th Workshop on Recent Issues in Bioanalysis (WRIB) took place in New Orleans, LA, USA on April 1-5, 2019 with an attendance of over 1000 representatives from pharmaceutical/biopharmaceutical companies, biotechnology companies, contract research organizations and regulatory agencies worldwide. WRIB was once again a 5-day, week-long event - a full immersion week of bioanalysis, biomarkers, immunogenicity and gene therapy. As usual, it was specifically designed to facilitate sharing, reviewing, discussing and agreeing on approaches to address the most current issues of interest including both small- and large-molecule bioanalysis involving LCMS, hybrid LBA/LCMS, LBA cell-based/flow cytometry assays and qPCR approaches. This 2019 White Paper encompasses recommendations emerging from the extensive discussions held during the workshop, and is aimed to provide the bioanalytical community with key information and practical solutions on topics and issues addressed, in an effort to enable advances in scientific excellence, improved quality and better regulatory compliance. Due to its length, the 2019 edition of this comprehensive White Paper has been divided into three parts for editorial reasons. This publication (Part 1) covers the recommendations on Innovation in Small Molecules and Oligonucleotides & Mass Spec Method Development Strategies for Large Molecules Bioanalysis. Part 2 (2018 FDA BMV Guidance, 2019 ICH M10 BMV Draft Guideline and regulatory agencies' input on bioanalysis, biomarkers, immunogenicity and gene therapy) and Part 3 (New Insights in Biomarkers Assays Validation, Current & Effective Strategies for Critical Reagent Management, Flow Cytometry Validation in drug discovery & development & CLSI H62, Interpretation of the 2019 FDA Immunogenicity Guidance and The Gene Therapy Bioanalytical Challenges) are published in volume 11 of Bioanalysis, issues 23 and 24 (2019), respectively.
Assuntos
Cromatografia Líquida/métodos , Invenções , Espectrometria de Massas/métodos , Oligonucleotídeos/análise , Bibliotecas de Moléculas Pequenas/análiseRESUMO
Organic anion-transporting polypeptides (OATP) 1B1 and 1B3 are widely acknowledged as important and rate-limiting to the hepatic uptake of many drugs in clinical use. Accordingly, to better understand the in vivo relevance of OATP1B transporters, targeted disruption of murine Slco1b2 gene was carried out. It is noteworthy that Slco1b2(-/-) mice were fertile, developed normally, and exhibited no overt phenotypic abnormalities. We confirmed the loss of Oatp1b2 expression in liver using real-time polymerase chain reaction, Western Blot analysis, and immunohistochemistry. Expression of Oatp1a4 and Oatp2b1 but not Oatp1a1 was greater in female Slco1b2(-/-) mice, but expression of other non-OATP transporters did not significantly differ between wild-type and Slco1b2(-/-) male mice. Total bilirubin level was elevated by 2-fold in the Slco1b2(-/-) mice despite the fact that liver enzymes ALT and AST were normal. Pharmacological characterization was carried out using two prototypical substrates of human OATP1B1 and -1B3, rifampin and pravastatin. After a single intravenous dose of rifampin (1 mg/kg), a 1.7-fold increase in plasma area under the concentration-time curve (AUC) was observed, whereas the liver-to-plasma ratio was reduced by 5-fold, and nearly 8-fold when assessed at steady-state conditions after 24 h of continuous subcutaneous infusion in Slco1b2(-/-) mice. Likewise, continuous subcutaneous infusion at low (8 microg/h) or high (32 microg/h) dose rates of pravastatin resulted in a 4-fold lower liver-plasma ratio in the in Slco1b2(-/-) mice. This is the first report of altered drug disposition profile in the Slco1b2 knockout mice and suggests the utility of this model for understanding the in vivo role of hepatic OATP transporters in drug disposition.
Assuntos
Marcação de Genes/métodos , Transportadores de Ânions Orgânicos Sódio-Independentes/metabolismo , Pravastatina/metabolismo , Rifampina/metabolismo , Animais , Feminino , Injeções Intravenosas , Transportador 1 de Ânion Orgânico Específico do Fígado , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Camundongos Knockout , Transportadores de Ânions Orgânicos Sódio-Independentes/deficiência , Transportadores de Ânions Orgânicos Sódio-Independentes/genética , Pravastatina/farmacocinética , Rifampina/administração & dosagem , Rifampina/farmacocinética , Especificidade por Substrato/genéticaRESUMO
The 2018 12th Workshop on Recent Issues in Bioanalysis took place in Philadelphia, PA, USA on April 9-13, 2018 with an attendance of over 900 representatives from pharmaceutical/biopharmaceutical companies, biotechnology companies, contract research organizations and regulatory agencies worldwide. WRIB was once again a 5-day, week-long event - a full immersion week of bioanalysis, biomarkers and immunogenicity. As usual, it was specifically designed to facilitate sharing, reviewing, discussing and agreeing on approaches to address the most current issues of interest including both small- and large-molecule bioanalysis involving LCMS, hybrid LBA/LCMS and LBA/cell-based assays approaches. This 2018 White Paper encompasses recommendations emerging from the extensive discussions held during the workshop and is aimed to provide the bioanalytical community with key information and practical solutions on topics and issues addressed, in an effort to enable advances in scientific excellence, improved quality and better regulatory compliance. Due to its length, the 2018 edition of this comprehensive White Paper has been divided into three parts for editorial reasons. This publication (Part 2) covers the recommendations for PK, PD and ADA assays by hybrid LBA/LCMS and regulatory agencies' input. Part 1 (LCMS for small molecules, peptides, oligonucleotides and small molecule biomarkers) and Part 3 (LBA/cell-based assays: immunogenicity, biomarkers and PK assays) are published in volume 10 of Bioanalysis, issues 22 and 24 (2018), respectively.
Assuntos
Antígenos/análise , Bioensaio/normas , Biomarcadores/análise , Legislação Médica/tendências , Estados UnidosRESUMO
Myostatin is a highly conserved protein secreted primarily from skeletal muscle that can potently suppress muscle growth. This ability to regulate skeletal muscle mass has sparked intense interest in the development of anti-myostatin therapies for a wide array of muscle disorders including sarcopenia, cachexia and genetic neuromuscular diseases. While a number of studies have examined the circulating myostatin concentrations in healthy and sarcopenic populations, very little data are available from inherited muscle disease patients. Here, we have measured the myostatin concentration in serum from seven genetic neuromuscular disorder patient populations using immunoaffinity LC-MS/MS. Average serum concentrations of myostatin in all seven muscle disease patient groups were significantly less than those measured in healthy controls. Furthermore, circulating myostatin concentrations correlated with clinical measures of disease progression for five of the muscle disease patient populations. These findings greatly expand the understanding of myostatin in neuromuscular disease and suggest its potential utility as a biomarker of disease progression.
Assuntos
Miostatina/sangue , Doenças Neuromusculares/sangue , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Biomarcadores/sangue , Análise Química do Sangue , Criança , Pré-Escolar , Estudos de Coortes , Progressão da Doença , Feminino , Humanos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Pessoa de Meia-Idade , Doenças Neuromusculares/genética , Adulto JovemRESUMO
The 2017 11th Workshop on Recent Issues in Bioanalysis (11th WRIB) took place in Los Angeles/Universal City, California on 3-7 April 2017 with participation of close to 750 professionals from pharmaceutical/biopharmaceutical companies, biotechnology companies, contract research organizations and regulatory agencies worldwide. WRIB was once again a 5-day, weeklong event - a full immersion week of bioanalysis, biomarkers and immunogenicity. As usual, it was specifically designed to facilitate sharing, reviewing, discussing and agreeing on approaches to address the most current issues of interest including both small and large molecule analysis involving LCMS, hybrid ligand binding assay (LBA)/LCMS and LBA approaches. This 2017 White Paper encompasses recommendations emerging from the extensive discussions held during the workshop, and is aimed to provide the bioanalytical community with key information and practical solutions on topics and issues addressed, in an effort to enable advances in scientific excellence, improved quality and better regulatory compliance. Due to its length, the 2017 edition of this comprehensive White Paper has been divided into three parts for editorial reasons. This publication (Part 2) covers the recommendations for biotherapeutics, biomarkers and immunogenicity assays using hybrid LBA/LCMS and regulatory agencies' inputs. Part 1 (LCMS for small molecules, peptides and small molecule biomarkers) and Part 3 (LBA: immunogenicity, biomarkers and pharmacokinetic assays) are published in Volume 9 of Bioanalysis, issues 22 and 24 (2017), respectively.
Assuntos
Biomarcadores/análise , Imunidade Ativa , Espectrometria de Massas , Cromatografia Líquida de Alta Pressão , Conferências de Consenso como Assunto , Regulamentação Governamental , LigantesRESUMO
PURPOSE: Growth and differentiation factor 8 (GDF-8) is a negative regulator of skeletal muscle mass and targeted by inhibitors to treat diseases associated with muscle loss. In order to enable clinical and translational investigations of GDF-8 inhibitors, specific and sensitive measurements of GDF-8 are necessary. EXPERIMENTAL DESIGN: An immunoaffinity LC-MS/MS assay for quantification of GDF-8 in serum was developed, qualified and implemented. The workflow includes offline enrichment of GDF-8 using an anti-GDF-8 antibody, followed by isolation using magnetic beads, trypsin digestion, and quantification using 2D nanoflow LC-MS/MS. RESULTS: This assay was qualified in human serum with a lower LOQ of 1.0 ng/mL based on the intact protein. GDF-8 was quantified in serum from juvenile and adult humans as well as mouse, rat, and cynomolgus monkey. Additionally, the assay was utilized to demonstrate an increase of total GDF-8 in serum following administration of an anti-GDF-8 monoclonal antibody therapeutic in cynomolgus monkeys. CONCLUSIONS AND CLINICAL RELEVANCE: A specific and sensitive method was developed for the measurement of GDF-8 in juvenile and adult serum samples as well as preclinical species. The confident quantification of GDF-8 now enables a greater understanding of any association between changes GDF-8 levels and muscle mass.
Assuntos
Anticorpos Monoclonais/química , Bioensaio/normas , Miostatina/sangue , Sequência de Aminoácidos , Animais , Cromatografia de Afinidade/métodos , Cromatografia Líquida/métodos , Expressão Gênica , Humanos , Separação Imunomagnética/métodos , Macaca fascicularis , Camundongos , Miostatina/genética , Peptídeos/síntese química , Ratos , Espectrometria de Massas em Tandem/métodosRESUMO
Genome-wide association studies of asthma have identified genetic variants in the IL1RL1 gene, but the molecular mechanisms conferring risk are unknown. IL1RL1 encodes the ST2 receptor (ST2L) for IL-33 and an inhibitory decoy receptor (sST2). IL-33 promotes type 2 inflammation, which is present in some but not all asthmatics. We find that two single nucleotide polymorphisms (SNPs) in IL1RL1 - rs1420101 and rs11685480 - are strongly associated with plasma sST2 levels, though neither is an expression quantitative trait locus (eQTL) in whole blood. Rather, rs1420101 and rs11685480 mark eQTLs in airway epithelial cells and distal lung parenchyma, respectively. We find that the genetically determined plasma sST2 reservoir, derived from the lung, neutralizes IL-33 activity, and these eQTL SNPs additively increase the risk of airway type 2 inflammation among asthmatics. These risk variants define a population of asthmatics at risk of IL-33-driven type 2 inflammation.
Assuntos
Asma/genética , Proteína 1 Semelhante a Receptor de Interleucina-1/genética , Locos de Características Quantitativas , Células Cultivadas , Predisposição Genética para Doença , Humanos , Inflamação , Interleucina-33 , Polimorfismo de Nucleotídeo ÚnicoRESUMO
BACKGROUND: Myostatin (Mstn) is a negative regulator of muscle growth whose inhibition promotes muscle growth and regeneration. Dystrophin-deficient mdx mice in which myostatin is knocked out or inhibited postnatally have a less severe phenotype with greater total mass and strength and less fibrosis and fatty replacement of muscles than mdx mice with wild-type myostatin expression. Dogs with golden retriever muscular dystrophy (GRMD) have previously been noted to have increased muscle mass and reduced fibrosis after systemic postnatal myostatin inhibition. Based partly on these results, myostatin inhibitors are in development for use in human muscular dystrophies. However, persisting concerns regarding the effects of long-term and profound myostatin inhibition will not be easily or imminently answered in clinical trials. METHODS: To address these concerns, we developed a canine (GRippet) model by crossbreeding dystrophin-deficient GRMD dogs with Mstn-heterozygous (Mstn (+/-)) whippets. A total of four GRippets (dystrophic and Mstn (+/-)), three GRMD (dystrophic and Mstn wild-type) dogs, and three non-dystrophic controls from two litters were evaluated. RESULTS: Myostatin messenger ribonucleic acid (mRNA) and protein levels were downregulated in both GRMD and GRippet dogs. GRippets had more severe postural changes and larger (more restricted) maximal joint flexion angles, apparently due to further exaggeration of disproportionate effects on muscle size. Flexors such as the cranial sartorius were more hypertrophied on magnetic resonance imaging (MRI) in the GRippets, while extensors, including the quadriceps femoris, underwent greater atrophy. Myostatin protein levels negatively correlated with relative cranial sartorius muscle cross-sectional area on MRI, supporting a role in disproportionate muscle size. Activin receptor type IIB (ActRIIB) expression was higher in dystrophic versus control dogs, consistent with physiologic feedback between myostatin and ActRIIB. However, there was no differential expression between GRMD and GRippet dogs. Satellite cell exhaustion was not observed in GRippets up to 3 years of age. CONCLUSIONS: Partial myostatin loss may exaggerate selective muscle hypertrophy or atrophy/hypoplasia in GRMD dogs and worsen contractures. While muscle imbalance is not a feature of myostatin inhibition in mdx mice, findings in a larger animal model could translate to human experience with myostatin inhibitors.