Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
1.
J Am Chem Soc ; 146(31): 21555-21567, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39054767

RESUMO

Transforming growth factor (TGF)-ß1 is a multifunctional protein that is essential in many cellular processes that include fibrosis, inflammation, chondrogenesis, and cartilage repair. In particular, cartilage repair is important to avoid physical disability since this tissue does not have the inherent capacity to regenerate beyond full development. We report here on supramolecular coassemblies of two peptide amphiphile molecules, one containing a TGF-ß1 mimetic peptide, and another which is one of two constitutional isomers lacking bioactivity. Using human articular chondrocytes, we investigated the bioactivity of the supramolecular copolymers of each isomer displaying either the previously reported linear form of the mimetic peptide or a novel cyclic analogue. Based on fluorescence depolarization and 1H NMR spin-lattice relaxation times, we found that coassemblies containing the cyclic compound and the most dynamic isomer exhibited the highest intracellular TGF-ß1 signaling and gene expression of cartilage extracellular matrix components. We conclude that control of supramolecular motion is emerging as an important factor in the binding of synthetic molecules to receptors that can be tuned through chemical structure.


Assuntos
Condrócitos , Condrogênese , Peptídeos Cíclicos , Fator de Crescimento Transformador beta1 , Fator de Crescimento Transformador beta1/metabolismo , Fator de Crescimento Transformador beta1/química , Fator de Crescimento Transformador beta1/farmacologia , Humanos , Peptídeos Cíclicos/química , Peptídeos Cíclicos/farmacologia , Peptídeos Cíclicos/síntese química , Condrócitos/efeitos dos fármacos , Condrócitos/metabolismo , Condrócitos/citologia , Condrogênese/efeitos dos fármacos
2.
J Am Chem Soc ; 146(23): 16085-16096, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38831660

RESUMO

Bottlebrush polymers, macromolecules consisting of dense polymer side chains grafted from a central polymer backbone, have unique properties resulting from this well-defined molecular architecture. With the advent of controlled radical polymerization techniques, access to these architectures has become more readily available. However, synthetic challenges remain, including the need for intermediate purification, the use of toxic solvents, and challenges with achieving long bottlebrush architectures due to backbone entanglements. Herein, we report hybrid bonding bottlebrush polymers (systems integrating covalent and noncovalent bonding of structural units) consisting of poly(sodium 4-styrenesulfonate) (p(NaSS)) brushes grafted from a peptide amphiphile (PA) supramolecular polymer backbone. This was achieved using photoinitiated electron/energy transfer-reversible addition-fragmentation chain transfer (PET-RAFT) polymerization in water. The structure of the hybrid bonding bottlebrush architecture was characterized using cryogenic transmission electron microscopy, and its properties were probed using rheological measurements. We observed that hybrid bonding bottlebrush polymers were able to organize into block architectures containing domains with high brush grafting density and others with no observable brushes. This finding is possibly a result of dynamic behavior unique to supramolecular polymer backbones, enabling molecular exchange or translational diffusion of monomers along the length of the assemblies. The hybrid bottlebrush polymers exhibited higher solution viscosity at moderate shear, protected supramolecular polymer backbones from disassembly at high shear, and supported self-healing capabilities, depending on grafting densities. Our results demonstrate an opportunity for novel properties in easily synthesized bottlebrush polymer architectures built with supramolecular polymers that might be useful in biomedical applications or for aqueous lubrication.

3.
Soft Matter ; 20(31): 6275-6288, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39072531

RESUMO

Solar generation of H2 is a promising strategy for dense energy storage. Supramolecular polymers composed of chromophore amphiphile monomers containing perylene monoimide (PMI) have been reported as crystalline light-harvesting assemblies for aqueous H2-evolving catalysts. Gelation of these supramolecular polymers with multivalent ions creates hydrogels with high diffusivity but insufficient mechanical stability and catalyst retention for reusability. We report here on using sodium alginate (SA) biopolymer to both induce supramolecular polymerization of PMI and co-immobilize them with catalysts in a robust hydrogel with high diffusivity that can also be 3D-printed. Faster mass transfer was achieved by controlling the material macrostructure by reducing gel diameter and microstructure by reducing biopolymer loading. Optimized gels produce H2 at rates rivaling solution-based PMI and generate H2 for up to 6 days. The PMI assemblies in the SA matrix create a percolation network capable of bulk-electron transfer under illumination. These PMI-SA materials were then 3D-printed on conductive substrates to create 3D hydrogel photoelectrodes with optimized porosity. The design of these versatile hybrid materials was bioinspired by the soft matter environment of natural photosynthetic systems and opens the opportunity to carry out light-to-fuel conversion within soft matter with arbitrary shapes and particular local environments.

4.
Angew Chem Int Ed Engl ; 62(17): e202214997, 2023 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-36861407

RESUMO

Supramolecular polymerization of π-conjugated amphiphiles in water is an attractive approach to create functional nanostructures. Here, we report on the synthesis, optoelectronic and electrochemical properties, aqueous supramolecular polymerization, and conductivity of polycyclic aromatic dicarboximide amphiphiles. The chemical structure of the model perylene monoimide amphiphile was modified with heterocycles, essentially substituting one fused benzene ring with thiophene, pyridine or pyrrole rings. All the heterocycle-containing monomers investigated underwent supramolecular polymerization in water. Large changes to the monomeric molecular dipole moments led to nanostructures with low electrical conductivity due to diminished interactions. Although the substitution of benzene with thiophene did not notably change the monomer dipole moment, it led to crystalline nanoribbons with 20-fold higher electrical conductivity, due to enhanced dispersion interactions as a result of the presence of sulfur atoms.

5.
J Am Chem Soc ; 144(36): 16512-16523, 2022 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-36049084

RESUMO

Pathways in supramolecular polymerization traverse different regions of the system's energy landscape, affecting not only their architectures and internal structure but also their functions. We report here on the effects of pathway selection on polymerization for two isomeric peptide amphiphile monomers with amino acid sequences AAEE and AEAE. We subjected the monomers to five different pathways that varied in the order they were exposed to electrostatic screening by electrolytes and thermal annealing. We found that introducing electrostatic screening of E residues before annealing led to crystalline packing of AAEE monomers. Electrostatic screening decreased intermolecular repulsion among AAEE monomers thus promoting internal order within the supramolecular polymers, while subsequent annealing brought them closer to thermodynamic equilibrium with enhanced ß-sheet secondary structure. In contrast, supramolecular polymerization of AEAE monomers was less pathway dependent, which we attribute to side-chain dimerization. Regardless of the pathway, the internal structure of AEAE nanostructures had limited internal order and moderate ß-sheet structure. These supramolecular polymers generated hydrogels with lower porosity and greater bulk mechanical strength than those formed by the more cohesive AAEE polymers. The combination of dynamic, less ordered internal structure and bulk strength of AEAE networks promoted strong cell-material interactions in adherent epithelial-like cells, evidenced by increased cytoskeletal remodeling and cell spreading. The highly ordered AAEE nanostructures formed porous hydrogels with inferior bulk mechanical properties and weaker cell-material interactions. We conclude that pathway sensitivity in supramolecular synthesis, and therefore structure and function, is highly dependent on the nature of dominant interactions driving polymerization.


Assuntos
Peptídeos , Polímeros , Sequência de Aminoácidos , Hidrogéis , Peptídeos/química , Polimerização , Polímeros/química
6.
J Am Chem Soc ; 144(12): 5562-5574, 2022 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-35296133

RESUMO

Supramolecular peptide chemistry offers a versatile strategy to create chemical systems useful as new biomaterials with potential to deliver nearly 1000 known candidate peptide therapeutics or integrate other types of bioactivity. We report here on the co-assembly of lipidated ß-sheet-forming peptides with soluble short peptides, yielding supramolecular copolymers with various degrees of internal order. At low peptide concentrations, the co-monomer is protected by lodging within internal aqueous compartments and stabilizing internal ß-sheets formed by the lipidated peptides. At higher concentrations, the peptide copolymerizes with the lipidated peptide and disrupts the ß-sheet secondary structure. The thermodynamic metastability of the co-assembly in turn leads to the spontaneous release of peptide monomers and thus serves as a potential mechanism for drug delivery. We demonstrated the function of these supramolecular systems using a drug candidate for Alzheimer's disease and found that the copolymers enhance neuronal cell viability when the soluble peptide is released from the assemblies.


Assuntos
Peptídeos , Polímeros , Peptídeos/química , Peptídeos/farmacologia , Conformação Proteica em Folha beta , Estrutura Secundária de Proteína , Termodinâmica
7.
Nano Lett ; 21(14): 6146-6155, 2021 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-34259001

RESUMO

The morphology of supramolecular peptide nanostructures is difficult to predict given their complex energy landscapes. We investigated peptide amphiphiles containing ß-sheet forming domains that form twisted nanoribbons in water. We explained the morphology based on a balance between the energetically favorable packing of molecules in the center of the nanostructures, the unfavorable packing at the edges, and the deformations due to packing of twisted ß-sheets. We find that morphological polydispersity of PA nanostructures is determined by peptide sequences, and the twisting of their internal ß-sheets. We also observed a change in the supramolecular chirality of the nanostructures as the peptide sequence was modified, although only amino acids with l-configuration were used. Upon increasing charge repulsion between molecules, we observed a change in morphology to long cylinders and then rodlike fragments and spherical micelles. Understanding the self-assembly mechanisms of peptide amphiphiles into nanostructures should be useful to optimize their well-known functions.


Assuntos
Nanoestruturas , Peptídeos , Sequência de Aminoácidos , Aminoácidos , Água
8.
Nano Lett ; 21(9): 3745-3752, 2021 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-33877843

RESUMO

The control of morphology in bioinspired chromophore assemblies is key to the rational design of functional materials for light harvesting. We investigate here morphological changes in perylene monoimide chromophore assemblies during thermal annealing in aqueous environments of high ionic strength to screen electrostatic repulsion. We found that annealing under these conditions leads to the growth of extra-large ribbon-shaped crystalline supramolecular polymers of widths from about 100 nm to several micrometers and lengths from 1 to 10 µm while still maintaining a unimolecular thickness. This growth process was monitored by variable-temperature absorbance spectroscopy, synchrotron X-ray scattering, and confocal microscopy. The extra-large single-crystal-like supramolecular polymers are highly porogenic, thus creating loosely packed hydrogel scaffolds that showed greatly enhanced photocatalytic hydrogen production with turnover numbers as high as 13 500 over ∼110 h compared to 7500 when smaller polymers are used. Our results indicate great functional opportunities in thermally and pathway-controlled supramolecular polymerization.


Assuntos
Perileno , Hidrogênio , Polimerização , Polímeros , Eletricidade Estática
9.
Nat Mater ; 19(8): 900-909, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32572204

RESUMO

The development of synthetic structures that mimic mechanical actuation in living matter such as autonomous translation and shape changes remains a grand challenge for materials science. In living systems the integration of supramolecular structures and covalent polymers contributes to the responsive behaviour of membranes, muscles and tendons, among others. Here we describe hybrid light-responsive soft materials composed of peptide amphiphile supramolecular polymers chemically bonded to spiropyran-based networks that expel water in response to visible light. The supramolecular polymers form a reversibly deformable and water-draining skeleton that mechanically reinforces the hybrid and can also be aligned by printing methods. The noncovalent skeleton embedded in the network thus enables faster bending and flattening actuation of objects, as well as longer steps during the light-driven crawling motion of macroscopic films. Our work suggests that hybrid bonding polymers, which integrate supramolecular assemblies and covalent networks, offer strategies for the bottom-up design of soft matter that mimics living organisms.


Assuntos
Biomimética , Luz , Fenômenos Mecânicos , Polímeros/química , Hidrogéis/química , Isomerismo , Processos Fotoquímicos
10.
Soft Matter ; 17(14): 3902-3912, 2021 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-33705512

RESUMO

Supramolecular self-assembly enables living organisms to form highly functional hierarchical structures with individual components self-organized across multiple length scales. This has inspired work on multicomponent supramolecular materials to understand factors behind co-assembly versus self-sorting of molecules. We report here on a supramolecular system comprised of negatively charged peptide amphiphile (PA) molecules, in which only a tiny fraction of the molecules (0.7 mol%) were covalently conjugated to one of two different fluorophores, half to fluorescein isothiocyanate (FTIC) and the other half to tetramethylrhodamine (TAMRA). Confocal microscopy of the system revealed self-sorting of the two different fluorescent PA molecules, where TAMRA PA is concentrated in micron-scale domains while FITC PA remains dispersed throughout the sample. From Förster resonance energy transfer and fluorescence recovery experiments, we conclude that conjugation of the negatively charged FITC to PA significantly disrupts its co-assembly with the 99.3 mol% of unlabeled molecules, which are responsible for formation of micron-scale domains. Conversely, conjugation of the zwitterionic TAMRA causes no such disruption. Interestingly, this dissimilar behavior between FITC and TAMRA PA causes them to self-sort at large length scales in the supramolecular system, mediated not by specific interactions among the individual fluorophores but instead by their different propensities to co-assemble with the majority component. We also found that greater ionic strength in the aqueous environment of the system promotes mixing by lowering the electrostatic barriers involved in self-sorting. Our results demonstrate great thermodynamic subtlety in the driving forces that mediate self-sorting versus co-assembly in supramolecular peptide assemblies.


Assuntos
Peptídeos , Água , Concentração Osmolar , Eletricidade Estática , Termodinâmica
11.
Soft Matter ; 17(19): 4949-4956, 2021 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-34008682

RESUMO

Hierarchical self-assembly leading to organized supramolecular structures across multiple length scales has been of great recent interest. Earlier work from our laboratory reported the complexation of peptide amphiphile (PA) supramolecular polymers with oppositely charged polyelectrolytes into a single solid membrane at a macroscopic interface. We report here the formation of bulk gels with many internal interfaces between the covalent and supramolecular polymer components formed by the rapid chaotic mixing of solutions, one containing negatively charged PA nanofibers and the other the positively charged biopolymer chitosan. We found that formation of a contact layer at the interface of the solutions locks the formation of hydrogels with lamellar microstructure. The nanofiber morphology of the supramolecular polymer is essential to this process since gels do not form when solutions of supramolecular assemblies form spherical micelles. We found that rheological properties of the gels can be tuned by changing the relative amounts of each component. Furthermore, both positively and negatively charged proteins are easily encapsulated within the contact layer of the gel, which provides an interesting biomedical function for these systems.


Assuntos
Nanofibras , Hidrogéis , Peptídeos , Polieletrólitos , Reologia
12.
J Am Chem Soc ; 142(18): 8447-8453, 2020 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-32330027

RESUMO

The incorporation of molecular switches in organic structures is of great interest in the chemical design of stimuli-responsive materials that mimic the complex functions of living systems. Merocyanine dyes that convert to spiropyran moieties upon exposure to visible light have been extensively studied as they can be incorporated in hydrated covalent networks that will expel water when this conversion occurs and induce a volumetric shrinkage. We report here on a sulfonate-based water-soluble photoswitch that, in contrast to the well-known systems, triggers a volumetric expansion in hydrogels upon exposure to photons. Contraction is in turn observed under dark conditions in a highly reversible manner. The novel behavior of the photoswitch incorporated in the covalent network was predicted by coarse-grained simulations of the system's chemical structure. Using pH control and polymeric structures that differ in lower critical solution temperature, we were able to develop hydrogels with highly tunable volumetric expansion. The novel molecular function of the systems developed here led to materials with the negative phototaxis observed in plants and could expand the potential use of hydrogels as sensors, soft robots, and actuators.


Assuntos
Benzopiranos/química , Hidrogéis/química , Indóis/química , Luz , Nitrocompostos/química , Benzopiranos/síntese química , Hidrogéis/síntese química , Indóis/síntese química , Estrutura Molecular , Nitrocompostos/síntese química
13.
J Am Chem Soc ; 142(28): 12216-12225, 2020 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-32598851

RESUMO

Hierarchical assemblies of proteins into fibrillar structures occur in both physiologic and pathologic extracellular spaces and often involve interactions between oppositely charged peptide domains. However, the interplay between tertiary structure dynamics and quaternary hierarchical structure formation remains unclear. In this work, we investigate supramolecular mimics of these systems by mixing one-dimensional assemblies of small alkylated peptides bearing opposite charge and varying in peptide sequence. We found that assemblies with weak cohesive interactions readily create fibrous superstructures of bundled filaments as molecules redistribute upon mixing. Low cohesion allows molecules to escape from the original assemblies and exchange dynamics help them reassemble into electrostatically stable bundles. However, we also found that kinetic barriers can be encountered in these systems and limit formation of the hierarchical structures at pH values where charge densities are high. Increasing intermolecular cohesion using longer peptide sequences that form stable ß-sheets was found to suppress superstructure formation. Our findings suggest that low internal cohesion in protein systems could facilitate the conformational rearrangements required to create hierarchical structures.


Assuntos
Peptídeos/química , Proteínas/química , Substâncias Macromoleculares/síntese química , Substâncias Macromoleculares/química , Tamanho da Partícula , Peptídeos/síntese química , Conformação Proteica , Proteínas/síntese química , Propriedades de Superfície
14.
Chem Soc Rev ; 47(20): 7539-7551, 2018 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-30187042

RESUMO

Supramolecular assembly of peptide-based monomers into nanostructures offers many promising applications in advanced therapies. In this Tutorial Review, we introduce molecular designs to control the structure and potential biological function of supramolecular assemblies. An emphasis is placed on peptide-based supramolecular nanostructures that are intentionally designed to signal cells, either directly through the incorporation of amino acid sequences that activate receptors or indirectly by recruiting native signals such as growth factors. Additionally, we describe the use and future potential of hierarchical structures, such as single molecules that assemble into nanoscale fibers which then align to form macroscopic strings; the strings can then serve as scaffolds for cell growth, proliferation, and differentiation.


Assuntos
Nanomedicina/métodos , Nanoestruturas/uso terapêutico , Peptídeos/uso terapêutico , Animais , Materiais Biomiméticos/química , Materiais Biomiméticos/uso terapêutico , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Modelos Moleculares , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Nanotecnologia/métodos , Peptídeos/química
15.
Nano Lett ; 18(11): 6832-6841, 2018 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-30379077

RESUMO

Supramolecular nanostructures formed through self-assembly can have energy landscapes, which determine their structures and functions depending on the pathways selected for their synthesis and processing and on the conditions they are exposed to after their initial formation. We report here on the structural damage that occurs in supramolecular peptide amphiphile nanostructures, during freezing in aqueous media, and the self-repair pathways that restore their functions. We found that freezing converts long supramolecular nanofibers into shorter ones, compromising their ability to support cell adhesion, but a single heating and cooling cycle reverses the damage and rescues their bioactivity. Thermal energy in this cycle enables noncovalent interactions to reconfigure the nanostructures into the thermodynamically preferred long nanofibers, a repair process that is impeded by kinetic traps. In addition, we found that nanofibers disrupted during freeze-drying also exhibit the ability to undergo thermal self-repair and recovery of their bioactivity, despite the extra disruption caused by the dehydration step. Following both freezing and freeze-drying, which shorten the 1D nanostructures, their self-repair capacity through thermally driven elongation is inhibited by kinetically trapped states, which contain highly stable noncovalent interactions that are difficult to rearrange. These states decrease the extent of thermal nanostructure repair, an observation we hypothesize applies to supramolecular systems in general and is mechanistically linked to suppressed molecular exchange dynamics.


Assuntos
Congelamento , Temperatura Alta , Nanoestruturas/química , Peptídeos/química , Nanoestruturas/ultraestrutura
16.
Acc Chem Res ; 50(10): 2440-2448, 2017 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-28876055

RESUMO

Peptide amphiphiles (PAs) are small molecules that contain hydrophobic components covalently conjugated to peptides. In this Account, we describe recent advances involving PAs that consist of a short peptide sequence linked to an aliphatic tail. The peptide sequence can be designed to form ß-sheets among the amino acids near the alkyl tail, while the residues farthest from the tail are charged to promote solubility and in some cases contain a bioactive sequence. In water, ß-sheet formation and hydrophobic collapse of the aliphatic tails induce assembly of the molecules into supramolecular one-dimensional nanostructures, commonly high-aspect-ratio cylindrical or ribbonlike nanofibers. These nanostructures hold significant promise for biomedical functions due to their ability to display a high density of biological signals on their surface for targeting or to activate pathways, as well as for biocompatibility and biodegradable nature. Recent studies have shown that supramolecular systems, such as PAs, often become kinetically trapped in local minima along their self-assembly reaction coordinate, not unlike the pathways associated with protein folding. Furthermore, the assembly pathway can influence the shape, internal structure, and dimension of nanostructures and thereby affect their bioactivity. We discuss methods to map the energy landscape of a PA structure as a function of thermal energy and ionic strength and vary these parameters to convert between kinetically trapped and thermodynamically favorable states. We also demonstrate that the pathway-dependent morphology of the PA assembly can determine biological cell adhesion and survival rates. The dynamics associated with the nanostructures are also critical to their function, and techniques are now available to probe the internal dynamics of these nanostructures. For example, by conjugating radical electron spin labels to PAs, electron paramagnetic resonance spectroscopy can be used to study the rotational diffusion rates within the fiber, showing a liquidlike to solidlike transition through the cross section of the nanofiber. PAs can also be labeled with fluorescent dyes, allowing the use of super-resolution microscopy techniques to study the molecular exchange dynamics between PA fibers. For a weak hydrogen-bonding PA, individual PA molecules or clusters exchange between fibers in time scales as short as minutes. The amount of hydrogen bonding within PAs that dictates the dynamics also plays an important role in biological function. In one case, weak hydrogen bonding within a PA resulted in cell death through disruption of lipid membranes, while in another example reduced hydrogen bonding enhanced growth factor signaling by increasing lipid raft mobility. PAs are a promising platform for designing advanced hybrid materials. We discuss a covalent polymer with a rigid aromatic imine backbone and alkylated peptide side chains that simultaneously polymerizes and interacts with a supramolecular PA structure with identical chemistry to that of the side chains. The covalent polymerization can be "catalyzed" by noncovalent polymerization of supramolecular monomers, taking advantage of the dynamic nature of supramolecular assemblies. These novel hybrid structures have potential in self-repairing materials and as reusable scaffolds for delivery of drugs or other chemicals. Finally, we highlight recent biomedical applications of PAs and related structures, ranging from bone regeneration to decreasing blood loss during internal bleeding.


Assuntos
Substâncias Macromoleculares/química , Peptídeos/química , Tensoativos/química , Animais , Adesão Celular/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Ligação de Hidrogênio , Nanofibras/química , Concentração Osmolar , Conformação Proteica , Multimerização Proteica , Termodinâmica , Água/química
17.
J Am Chem Soc ; 139(26): 8995-9000, 2017 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-28639790

RESUMO

Controlling the number of monomers in a supramolecular polymer has been a great challenge in programmable self-assembly of organic molecules. One approach has been to make use of frustrated growth of the supramolecular assembly by tuning the balance of attractive and repulsive intermolecular forces. We report here on the use of covalent bond formation among monomers, compensating for intermolecular electrostatic repulsion, as a mechanism to control the length of a supramolecular nanofiber formed by self-assembly of peptide amphiphiles. Circular dichroism spectroscopy in combination with dynamic light scattering, size-exclusion chromatography, and transmittance electron microscope analyses revealed that hydrogen bonds between peptides were reinforced by covalent bond formation, enabling the fiber elongation. To examine these materials for their potential biomedical applications, cytotoxicity of nanofibers against C2C12 premyoblast cells was tested. We demonstrated that cell viability increased with an increase in fiber length, presumably because of the suppressed disruption of cell membranes by the fiber end-caps.


Assuntos
Peptídeos , Tensoativos/química , Ligação de Hidrogênio , Microscopia Eletrônica de Transmissão , Estrutura Molecular , Peptídeos/química , Eletricidade Estática
18.
J Am Chem Soc ; 139(26): 8915-8921, 2017 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-28636349

RESUMO

Water within and surrounding the structure of a biological system adopts context-specific dynamics that mediate virtually all of the events involved in the inner workings of a cell. These events range from protein folding and molecular recognition to the formation of hierarchical structures. Water dynamics are mediated by the chemistry and geometry of interfaces where water and biomolecules meet. Here we investigate experimentally and computationally the translational dynamics of vicinal water molecules within the volume of a supramolecular peptide nanofiber measuring 6.7 nm in diameter. Using Overhauser dynamic nuclear polarization relaxometry, we show that drastic differences exist in water motion within a distance of about one nanometer from the surface, with rapid diffusion in the hydrophobic interior and immobilized water on the nanofiber surface. These results demonstrate that water associated with materials designed at the nanoscale is not simply a solvent, but rather an integral part of their structure and potential functions.

19.
J Am Chem Soc ; 139(23): 7823-7830, 2017 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-28571316

RESUMO

Co-assembly of binary systems driven by specific non-covalent interactions can greatly expand the structural and functional space of supramolecular nanostructures. We report here on the self-assembly of peptide amphiphiles and fatty acids driven primarily by anion-π interactions. The peptide sequences investigated were functionalized with a perfluorinated phenylalanine residue to promote anion-π interactions with carboxylate headgroups in fatty acids. These interactions were verified here by NMR and circular dichroism experiments as well as investigated using atomistic simulations. Positioning the aromatic units close to the N-terminus of the peptide backbone near the hydrophobic core of cylindrical nanofibers leads to strong anion-π interactions between both components. With a low content of dodecanoic acid in this position, the cylindrical morphology is preserved. However, as the aromatic units are moved along the peptide backbone away from the hydrophobic core, the interactions with dodecanoic acid transform the cylindrical supramolecular morphology into ribbon-like structures. Increasing the ratio of dodecanoic acid to PA leads to either the formation of large vesicles in the binary systems where the anion-π interactions are strong, or a heterogeneous mixture of assemblies when the peptide amphiphiles associate weakly with dodecanoic acid. Our findings reveal how co-assembly involving designed specific interactions can drastically change supramolecular morphology and even cross from nano to micro scales.


Assuntos
Ácidos Láuricos/química , Lipídeos/química , Nanoestruturas/química , Peptídeos/química , Tensoativos/química , Ânions/química , Interações Hidrofóbicas e Hidrofílicas , Substâncias Macromoleculares/química , Conformação Molecular , Simulação de Dinâmica Molecular
20.
J Am Chem Soc ; 139(17): 6120-6127, 2017 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-28436654

RESUMO

The energy landscape of a supramolecular material can include different molecular packing configurations that differ in stability and function. We report here on a thermally driven crystalline order transition in the landscape of supramolecular nanostructures formed by charged chromophore amphiphiles in salt-containing aqueous solutions. An irreversible transition was observed from a metastable to a stable crystal phase within the nanostructures. In the stable crystalline phase, the molecules end up organized in a short scroll morphology at high ionic strengths and as long helical ribbons at lower salt content. This is interpreted as the result of the competition between electrostatic repulsive forces and attractive molecular interactions. Only the stable phase forms charge-transfer excitons upon exposure to visible light as indicated by absorbance and fluorescence features, second-order harmonic generation microscopy, and femtosecond transient absorbance spectroscopy. Interestingly, the supramolecular reconfiguration to the stable crystalline phase nanostructures enhances photosensitization of a proton reduction catalyst for hydrogen production.


Assuntos
Imidas/química , Perileno/química , Catálise , Cristalização , Substâncias Macromoleculares/síntese química , Substâncias Macromoleculares/química , Estrutura Molecular , Nanoestruturas/química , Tamanho da Partícula , Transição de Fase , Processos Fotoquímicos , Eletricidade Estática , Propriedades de Superfície , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA