Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Appl Environ Microbiol ; 78(23): 8191-201, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22983972

RESUMO

The exploitation of soil ecosystem services by agricultural management strategies requires knowledge of microbial communities in different management regimes. Crop cover by no-till management protects the soil surface, reducing the risk of erosion and nutrient leaching, but might increase straw residue-borne and soilborne plant-pathogenic fungi. A cross-site study of soil microbial communities and Fusarium fungistasis was conducted on six long-term agricultural fields with no-till and moldboard-plowed treatments. Microbial communities were studied at the topsoil surface (0 to 5 cm) and bottom (10 to 20 cm) by general bacterial and actinobacterial terminal restriction fragment length polymorphism (T-RFLP) and phospholipid fatty acid (PLFA) analyses. Fusarium culmorum soil fungistasis describing soil receptivity to plant-pathogenic fungi was explored by using the surface layer method. Soil depth had a significant impact on general bacterial as well as actinobacterial communities and PLFA profiles in no-till treatment, with a clear spatial distinction of communities (P < 0.05), whereas the depth-related separation of microbial communities was not observed in plowed fields. The fungal biomass was higher in no-till surface soil than in plowed soil (P < 0.07). Soil total microbial biomass and fungal biomass correlated with fungistasis (P < 0.02 for the sum of PLFAs; P < 0.001 for PLFA 18:2ω6). Our cross-site study demonstrated that agricultural management strategies can have a major impact on soil microbial community structures, indicating that it is possible to influence the soil processes with management decisions. The interactions between plant-pathogenic fungi and soil microbial communities are multifaceted, and a high level of fungistasis could be linked to the high microbial biomass in soil but not to the specific management strategy.


Assuntos
Agricultura/métodos , Bactérias/isolamento & purificação , Biota , Fusarium/isolamento & purificação , Microbiologia do Solo , Solo/química , Bactérias/genética , Bactérias/crescimento & desenvolvimento , Carga Bacteriana , Contagem de Colônia Microbiana , Impressões Digitais de DNA , Fusarium/genética , Fusarium/crescimento & desenvolvimento , Fosfolipídeos/análise , Polimorfismo de Fragmento de Restrição
2.
Front Microbiol ; 12: 693341, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34093513

RESUMO

[This corrects the article on p. 534786 in vol. 11, PMID: 33193124.].

3.
Front Microbiol ; 11: 534786, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33193124

RESUMO

The soil-borne plant pathogens cause serious yield losses and are difficult to control. In suppressive soils, disease incidence remains low regardless of the presence of the pathogen, the host plant, and favorable environmental conditions. The potential to improve natural soil disease suppressiveness through agricultural management practices would enable sustainable and resilient crop production systems. Our aim was to study the impact of autumn tillage methods and crop sequence on the soil carbon status, fungistasis and yield in boreal climate. The disease suppression was improved by the long-term reduced and no tillage management practices with and without crop rotation. Compared to the conventional plowing, the non-inversion tillage systems were shown to change the vertical distribution of soil carbon fractions and the amount of microbial biomass by concentrating them on the soil surface. Crop sequence and the choice of tillage method had a combined effect on soil organic carbon (SOC) sequestration. The improved general disease suppression had a positive correlation with the labile carbon status and microbial biomass. From the most common Fusarium species, the predominantly saprophytic F. avenaceum was more abundant under non-inversion practice, whereas the opposite was true for the pathogenic ones. Our findings furthermore demonstrated the correlation of the soil fungistasis laboratory assay results and the prevalence of the pathogenic test fungus Fusarium culmorum on the crop cereals in the field. Our results indicate that optimized management strategies have potential to improve microbial related soil fungistasis in boreal climate.

4.
Sci Total Environ ; 518-519: 337-44, 2015 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-25770946

RESUMO

We studied the effects of tillage and straw management on soil aggregation and soil carbon sequestration in a 30-year split-plot experiment on clay soil in southern Finland. The experimental plots were under conventional or reduced tillage with straw retained, removed or burnt. Wet sieving was done to study organic carbon and soil composition divided in four fractions: 1) large macroaggregates, 2) small macroaggregates, 3) microaggregates and 4) silt and clay. To further estimate the stability of carbon in the soil, coarse particulate organic matter, microaggregates and silt and clay were isolated from the macroaggregates. Total carbon stock in the topsoil (equivalent to 200 kg m(-2)) was slightly lower under reduced tillage (5.0 kg m(-2)) than under conventional tillage (5.2 kg m(-2)). Reduced tillage changed the soil composition by increasing the percentage of macroaggregates and decreasing the percentage of microaggregates. There was no evidence of differences in the composition of the macroaggregates or carbon content in the macroaggregate-occluded fractions. However, due to the higher total amount of macroaggregates in the soil, more carbon was bound to the macroaggregate-occluded microaggregates in reduced tillage. Compared with plowed soil, the density of deep burrowing earthworms (Lumbricus terrestris) was considerably higher under reduced tillage and positively associated with the percentage of large macroaggregates. The total amount of microbial biomass carbon did not differ between the treatments. Straw management did not have discernible effects either on soil aggregation or soil carbon stock. We conclude that although reduced tillage can improve clay soil structure, generally the chances to increase topsoil carbon sequestration by reduced tillage or straw management practices appear limited in cereal monoculture systems of the boreal region. This may be related to the already high C content of soils, the precipitation level favoring decomposition and aggregate turnover in the winter with topsoil frost.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA