Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
1.
Inorg Chem ; 63(15): 6734-6742, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38570330

RESUMO

The design of multimetal catalysts holds immense significance for efficient CO2 capture and its conversion into economically valuable chemicals. Herein, heterobimetallic catalysts (MiMo)L were exploited for the CO2 reduction reactions (CO2RR) using relativistic density functional theory (DFT). The octadentate Pacman-like polypyrrolic ligand (H4L) accommodates two metal ions (Mo, W, Nd, and U) inside (Mi) and outside (Mo) its month, rendering a weak bimetal coupling-assisted MN4 catalytically active site. Adsorption reactions have access to energetically stable coordination modes of -OCO, -OOC, and -(OCO)2, where the donor atom(s) are marked in bold. Among all of the species, (UiMoo)L releases the most energy. Along CO2RR, it favors to produce CO. The high-efficiency CO2 reduction is attributed to the size matching of U with the ligand mouth and the effective manipulation of the electron density of both ligand and bimetals. The mechanism in which heterobimetals synergetically capture and reduce CO2 has been postulated. This establishes a reference in elaborating on the complicated heterogeneous catalysis.

2.
Inorg Chem ; 62(27): 10762-10771, 2023 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-37377386

RESUMO

The successful management and safe disposal of high-level nuclear waste necessitate the efficient separation of actinides (An) from lanthanides (Ln), which has emerged as a crucial prerequisite. Mixed donor ligands incorporating both soft and hard donor atoms have garnered interest in the field of An/Ln separation and purification. One such example is nitrilotriacetamide (NTAamide) derivatives, which have demonstrated selectivity in extracting minor actinide Am(III) ions over Eu(III) ions. Nevertheless, the Am/Eu complexation behavior and selectivity remain underexplored. In the work, a comprehensive and systematic investigation has been conducted for [M(RL)(NO3)3] complexes (M = Am and Eu) utilizing relativistic density functional theory. The NTAamide ligand (RL) is substituted with various alkyl groups, namely, methyl, ethyl, propyl, n-butyl, n-pentyl, n-hexyl, n-heptyl, and n-octyl. Thermodynamic calculations show that the alkyl chain length in NTAamide is capable of tuning the separation selectivity of Am and Eu. Moreover, the differences in calculated free energies between Am and Eu complexes are more negative for R = Bu-Oct than Me-Pr. This indicates that elongation of the alkyl chain can increase the efficiency of selective separation of Am(III) from Eu(III). Based on the quantum theory of atoms in molecules and charge decomposition analyses, it has been observed that the strength of Am-RL bonds is higher than that of Eu-RL bonds. This disparity is attributed to a greater degree of covalency in Am-RL bonds and a higher level of charge transfer from ligands to Am within complexes containing these bonds. Energies of occupied orbitals with the central N character are recognized overall lower for [Am(OctL)(NO3)3] than for [Eu(OctL)(NO3)3], indicative of stronger complexation stability of the former. These results offer valuable insights into the separation mechanism of NTAamide ligands, which can help guide the development of more powerful agents for An/Ln separation in future applications.

3.
J Am Chem Soc ; 144(8): 3449-3457, 2022 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-35057612

RESUMO

Developing materials that possess colorimetric responses to external stimuli is a promising strategy for addressing the current challenges in radiation dosimetry. Currently, colorimetric ionizing-radiation-responsive materials remain underexplored, and those with multistimuli response are rare. Herein, the integration of thorium cation and photoresponsive terpyridine carboxylate ligand gives rise to a thorium nanocluster, Th-101, which displays the second case of fluorochromic response and unprecedented piezochromic behavior among all actinide materials. The emission color of Th-101 exhibits a gradual transition from blue to cyan to green upon irradiation with accumulated dose, which renders colorimetric dosimetry of ionizing radiation based on a red-green-blue (RGB) concept. Further fabricating Th-101 into a custom-built optoelectronic device allows for on-site quantification of radiation dose with merits of ease of operation, rapid readout, and cost-effectiveness.


Assuntos
Corantes Fluorescentes , Tório , Colorimetria
4.
Inorg Chem ; 61(30): 11715-11724, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35838526

RESUMO

Actinide complexes, which could enable the electrocatalytic H2O reduction, are not well documented because of the fact that actinide-containing catalysts are precluded by extremely stable actinyl species. Herein, by using relativistic density functional theory calculations, the arene-anchored trivalent actinide complexes (Me,MeArO)3ArAn (marked as [AnL]) with desirable electron transport between metal and ligand arene are investigated for H2 production. The metal center is changed from Ac to Pu. Electron-spin density calculations reveal a two-electron oxidative process (involving high-valent intermediates) for complexes [AnL] (An = P-Pu) along the catalytic pathway. The electrons are provided by both the actinide metal and the arene ring of ligand. This is comparable to the previously reported uranium catalyst (Ad,MeArO)3mesU (Ad = adamantine and mes = mesitylene). From the thermodynamic and kinetic perspectives, [PaL] offers appreciably lower reaction energies for the overall catalytic cycle than other actinide complexes. Thus, the protactinium complex tends to be the most reactive for H2O reduction to produce H2 and has the advantage of its experimental accessibility.

5.
Molecules ; 27(18)2022 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-36144824

RESUMO

Transition metal oxides (TMOs) and actinide ones (AnOs) have been widely applied in catalytic reactions due to their excellent physicochemical properties. However, the reaction pathway and mechanism, especially involving TM-An heterometallic centers, remain underexplored. In this respect, relativistic density functional theory (DFT) was used to examine uranium-doped zinc, copper, and nickel oxides for their catalytic activity toward the conversion of furfural to furfuryl alcohol. A comparison was made with their undoped TMOs. It was found that the three TMOs were capable of catalyzing the reaction, where the free energies of adsorption, hydrogenation, and desorption fell between -33.93 and 45.00 kJ/mol. The uranium doping extremely strengthened the adsorption of CuO-U and NiO-U toward furfural, making hydrogenation or desorption much harder. Intriguingly, ZnO-U showed the best catalytic performance among all six catalyst candidates, as its three reaction energies were very small (-10.54-8.12 kJ/mol). The reaction process and mechanism were further addressed in terms of the geometrical, bonding, charge, and electronic properties.

6.
Inorg Chem ; 60(24): 18859-18869, 2021 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-34883015

RESUMO

Designing novel catalysts is essential for the efficient conversion of metal alkylidyne into metal oxo ketene complexes in the presence of CO2, which to some extent resolves the environmental concerns of the ever-increasing carbon emission. In this regard, a series of metal alkylidyne complexes, [b-ONO]M≡CCH3(THF)2 ([b-ONO] = {(C6H4[C(CF3)2O])2N}3-; M = Cr, Mo, W, and U), have been comprehensively studied by relativistic density functional theory calculations. The calculated thermodynamics and kinetics unravel that the tungsten complex is capable of catalyzing the CO2 cleavage reaction, agreeing with the experimental findings for its analogue. Interestingly, the uranium complex shows superior catalytic performance because of the associated considerably lower energy barrier and larger reaction rate constant. The M≡C moiety in the complexes turns out to be the active site for the [2 + 2] cyclic addition. In contrast, complexes of Cr and Mo could not offer good catalytic performance. Along the reaction coordinate, the M-C (M = Cr, Mo, W, and U) bond regularly transforms from triple to double to single bonds; concomitantly, the newly formed M-O in the product is identified to have a triple-bond character. The catalytic reactions have been extensively explained and addressed by geometric/electronic structures and bonding analyses.

7.
Inorg Chem ; 60(8): 5747-5756, 2021 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-33826313

RESUMO

A series of hetero-bimetallic actinide complexes of the Schiff-base polypyrrolic macrocycle (L), featuring cation-cation interactions (CCIs), were systematically investigated using relativistic density functional theory (DFT). The tetrahydrofuran (THF) solvated complex [(THF)(OUVIOUIV)(THF)(L)]2+ has high reaction free energy (ΔrG), and its replacement with electron-donating iodine promotes the reaction thermodynamics to obtain uranyl iodide [(I)(OUVIOUIV)(I)(L)]2+ (UVI-UIV). Retaining this coordination geometry, calculations have been extended to other An(IV) (An = Th, Pa, Np, Pu), i.e., for the substitution of U(IV) to obtain UVI-AnIV. As a consequence, the reaction free energy is appreciably lowered, suggesting the thermodynamic feasibility for the experimental synthesis of these bimetallic complexes. Among all UVI-AnIV, the electron-spin density and high-lying occupied orbitals of UVI-PaIV show a large extent of electron transfer from electron-rich Pa(IV) to electron-deficient U(VI), leading to a more stable UV-PaV oxidation state. Additionally, the shortest bond distance and the comparatively negative Eint of the Pa-Oendo bond suggest more positive and negative charges (Q) of Pa and endo-oxo atoms, respectively. As a result of the enhanced Pa-Oendo bond and strong CCI in UVI-PaIV along with the corresponding lowest reaction free energy among all of the optimized complexes, uranyl species is a better candidate for the experimental synthesis in the ultimate context of environmental remediation.

8.
Inorg Chem ; 59(12): 8369-8379, 2020 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-32468810

RESUMO

With the reported CO2 activation for the oxidation of benzene to phenol (-ENE → -OL) by the graphitic carbon nitride g-C3N4 (CN) via an artificial photosynthetic route as inspiration, high-valent actinyls (AnmO2)n+ (An = U, Np, Pu; m = VI, V; n = 2, 1) have been introduced for its further modification. Our calculations indicate thermodynamic spontaneity in the feasibility of g-C3N4-(AnmO2)n+ (CN-Anm) formation. The magnificent structural and electronic properties of CN-Anm are utilized for CO2 activation in terms of the rarely studied -ENE → -OL conversion. The calculated free energies show that most steps of the catalytic cycle are favored by CN-Anm complexes. The first step (carbamate formation) is slightly endothermic in all cases, where CN-U is 0.51 eV higher than CN and CN-Pu is -0.01 eV lower. All benzene addition reactions release energy, with that for CN-U being the lowest. The phenolate formation is favored by some actinyl complexes over CN, and CN-U is only 0.23 eV higher. The phenol release (resulting in formamide complexes) and CO desorption are exothermic for all CN-Anm. The overall process suggests the improved catalytic performance of actinyl-modified CN materials, and the slightly depleted uranyl-carbon nitride could be one of the promising catalysts.

9.
Inorg Chem ; 59(24): 18018-18026, 2020 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-33300783

RESUMO

To explore the innovative uranyl(V) complexes by deeply understanding their coordination stability, relativistic density functional theory calculations have been performed to investigate the experimentally reported [(py)(R2AlOUVO)(py)(H2L)] [R = Me (1), iBu (2)] and [{(py)3MOUVO}(py)(H2L)] [M = Li (3), Na (4), K (5)] and their uranyl(VI) counterparts. Structural and topological analyses along with transformation-reaction energies and redox potentials were systematically studied. Geometrical and quantum theory of atoms in molecules analyses implied a linear U-Oexo-M feature in 1-3 and a bent one in 4 and 5. The calculated free energies (ΔrG) of reactions transforming 1/2 into 3/4/5 confirmed a higher stability of the latter ones, which were further corroborated by their reduction potentials (E0). The E0 value of 5 versus uranyl(VI) is close to its experimental value, particularly in solvation with spin-orbit coupling. The highest occupied and lowest unoccupied molecular orbitals of uranyl(V) and uranyl(VI) have predominant U(5fδ) character. Compared to mononuclear uranyl(VI), the coordination of aluminum and alkali metals to uranyl exo-oxo significantly contributes to the stabilization of uranyl(V) by altering the E0 value from -1.59 to -0.85, -0.91, -1.33, -1.50, and -1.46 V, respectively. The calculation results show a more positive E0 than that of the precursor 6VI/6 without exo-oxo coordination. The calculated E0 values of 3-5 are certainly more negative than those of 1 and 2. The alkali metals were found to activate U═O bonds more easily/readily than aluminum by coordination to the exo-oxo atom. In brief, the uranyl exo-oxo cation-cation-interaction enhanced the reduction ability from its uranyl(VI) analogue and raised the stability of the UV center.

10.
Inorg Chem ; 58(2): 1290-1300, 2019 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-30608156

RESUMO

Heterobimetallic uranium-transition metal (U-TM) complexes have abundant active centers (two metals and several ancillary ligands with various donor atoms) and possible metal-metal bonding interaction, leading to diversified electronic structures and rather complicated electronic transition types. In this regard, a comprehensive and systematic theoretical study is highly desired although challenging. In the work, density functional theory (DFT) was utilized to examine a series of uranium-group 10 metal complexes supported by bidentate phosphinoaryl oxide ligands (labeled as L). TM (Ni, Pd, and Pt), uranium oxidation state (IV and III) and axial donor (I, Br, Cl, F, Me3SiO, and vacant) were varied. Calculations demonstrate an intrinsic TM → U dative bond. The order of bond strength of U-Ni > U-Pt > U-Pd is suggested by the formal shortness ratios, quantum theory of atoms in molecule (QTAIM) data, interaction energy ( Eint), and bond orders calculated at various levels of theory. It is further evidenced by relativistic effects of heavy metal, natural orbital population and electronic spectroscopy. Regarding U-Ni complexes with different axial donors, metal-metal distances are found to be linearly correlated with QTAIM data/ Eint/bond orders. Experimental UV-vis-NIR spectra were well reproduced by time-dependent DFT calculations. Complicated visible-light absorption bands, whose understanding remains unclear for many experimentally known heterobimetallic complexes, were rationalized in the work, along with NIR bands assigned as 5f → 5f transitions.

11.
Inorg Chem ; 58(1): 950-959, 2019 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-30550264

RESUMO

The reaction of (THF)(H2L)(UVIO2) (L is a tetra-anion of polypyrrolic macrocycle) with AnIIICp3 (Cp = cyclopentadienyl) afforded two intriguing cation-cation interaction (CCI) complexes (i.e., uranyl-Np and -U), but did not yield the uranyl-Pu analogue. To complement and extend experimental results, a scalar relativistic density functional theory has been performed on the formation reactions and various relevant properties of (THF)(A2L)(OUO)-An(CpX)3 (A = Li and H; An = Pu, Np, and U; X = Me, H, Cl, and SiMe3). Inspired by a strategy that improves uranyl precursor reactivity, we utilized (THF)(Li2L)(UVIO2) instead to gain a uranyl-Pu complex. Reaction free energy is reduced even to be negative (i.e., undergoing an exergonic process), which provides the thermodynamic possibility for experimental synthesis. This manner is further rationalized by the lithiated precursor showing the increased Li-Oendo bond, uranium oxidation ability (VI → V), and exo-oxo basicity, as well as the lithiated uranyl-Pu product having more amount of electron transfer and a stronger Oexo-Pu bond (i.e., representing the CCI). Electronic structures and electron-transfer analyses reveal a UV-PuIV oxidation state for the new complex. Applying the more reactive lithiated precursor also decreases the formation reaction energies of uranyl-An (An = Np and U) complexes. The second strategy via exploiting substituted Cp to raise the reactivity of the plutonium reactant does not work well.

12.
Inorg Chem ; 58(15): 10028-10037, 2019 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-31298034

RESUMO

The recognition and in-depth understanding of inverse trans influence (ITI) have successfully guided the synthesis of novel actinide complexes and enriched actinide chemistry. Those complexes, however, are mainly limited to the involvement of high-valence actinide and/or metal-ligand multiple bonds. Examples containing both low oxidation state actinide and metal-metal single bond remain rare. Herein, more than 20 actinide-transition metal (An-TM) complexes of phosphinoaryl oxide ligands have been designed in accordance with several experimentally known analogs, by changing the metal atoms (An = Th, Pa, U, Np, and Pu; and TM = Ni, Pd, and Pt), actinide oxidation states (IV and III) and metal-metal axial donor ligands (X = Me3SiO, F, Cl, Br, and I). The relativistic density functional theory study of structural (trans-An-X and cis-An-O toward An-TM), bonding (topological electron/energy density), and electronic properties reveals the order of the ITI stabilizing actinide-metal bond. Computed electron affinity (EA) values, related to the electrochemical reduction, linearly correlate with experimentally measured reduction potentials. Although the same ITI order for the ligand donors was shown as in a previous study, the correlation between electrochemical reduction and the ITI was found to be weak when the actinide atoms were changed. For most complexes, the reduction is primarily of an actinide-based mechanism with minor participation of transition metal and phosphinoaryl oxide, whereas that of thorium-nickel complexes is different.

13.
Inorg Chem ; 57(7): 3893-3902, 2018 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-29561147

RESUMO

To provide deep insight into cation-cation interactions (CCIs) involving hexavalent actinyl species that are major components in spent nuclear fuel and pose important implications for the effective removal of radiotoxic pollutants in the environment, a series of homo- and heterobimetallic actinide complexes supported by cyclopentadienyl (Cp) and polypyrrolic macrocycle (H4L) ligands were systematically investigated using relativistic density functional theory. The metal sort in both parts of (THF)(H2L)(OAnVIO) and (An')IIICp3 from U to Np to Pu, as well as the substituent bonding to Cp from electron-donating Me to H to electron-withdrawing Cl, SiH3, and SiMe3, was changed. Over 0.70 electrons are unraveled to transfer from the electron-rich UIII to the electron-deficient AnVI of the actinyl moiety, leading to a more stable AnV-UIV isomer; in contrast, uranylneptunium and uranylplutonium complexes behave as electron-resonance structures between VI-III and V-IV. These were further corroborated by geometrical and electronic structures. The energies of CCIs (i.e., Oexo-An' bonds) were calculated to be -19.6 to -41.2 kcal/mol, affording those of OUO-Np (-23.9 kcal/mol) and OUO-Pu (-19.6 kcal/mol) with less electron transfer (ET) right at the low limit. Topological analyses of the electron density at the Oexo-An' bond critical points demonstrate that the CCIs are ET or dative bonds in nature. A positive correlation has been built between the CCIs' strength and corresponding ET amount. It is concluded that the CCIs of Oexo-An' are driven by the electrostatic attraction between the actinyl oxo atom (negative) and the actinide ion (positive) and enhanced by their ET. Finally, experimental syntheses of (THF)(H2L)(OUVIO)(An')IIICp3 (An' = U and Np) were well reproduced by thermodynamic calculations that yielded negative free energies in a tetrahydrofuran solution but a positive one for their uranylplutonium analogue, which was synthetically inaccessible. So, our thermodynamics would provide implications for the synthetic possibility of other theoretically designed bimetallic actinide complexes.

14.
Inorg Chem ; 57(8): 4419-4426, 2018 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-29570281

RESUMO

Exploitation of new materials for the removal of long-lived and highly radioactive actinides and their fission products produced in the nuclear fuel cycle is crucial for radionuclide management. Here, two rare porous anionic uranyl-organic frameworks (UOFs) have been successfully synthesized by a judicious combination of the tetratopic carboxylate ligand 1,3,6,8-tetrakis( p-benzoic acid)pyrene (H4TBAPy) and D3 h-symmetrical triangular [UO2(COO)3]-. The resulting two compounds exhibit different architectures, albeit with similar coordination modes. Of interest is that they have excellent adsorption performance on Cs+ from aqueous solution. The high removal efficency would make them promising in applications of radioactive waste management. Notably, the framework of compound 2, [(CH3)2NH2]4[(UO2)4(TBAPy)3]·22DMF·37H2O is sufficiently robust to allow the accessibility of intriguing single crystals of a Cs+-adsorbed derivative, which helps to elucidate the adsorption mechanism. The structural, bonding, and spectroscopic properties of the above compounds are examined using relativistic density functional theory (DFT). It is found that the adsorption toward cesium on UOFs is energetically favored, which features largely ionic bonds and is dominated by electrostatic attraction.

15.
Inorg Chem ; 56(5): 2763-2776, 2017 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-28195715

RESUMO

To understand interfacial behavior of actinides adsorbed onto mineral surfaces and unravel their structure-property relationship, the structures, electronic properties, and energetics of various ligated uranyl species adsorbed onto TiO2 surface nanoparticle clusters (SNCs) were examined using relativistic density functional theory. Rutile (110) and anatase (101) titania surfaces, experimentally known to be stable, were fully optimized. For the former, models studied include clean and water-free Ti27O64H20 (dry), partially hydrated (Ti27O64H20)(H2O)8 (sol) and proton-saturated [(Ti27O64H20)(H2O)8(H)2]2+ (sat), while defect-free and defected anatase SNCs involving more than 38 TiO2 units were considered. The aquouranyl sorption onto rutile SNCs is energetically preferred, with interaction energies of -8.54, -10.36, and -2.39 eV, respectively. Energy decomposition demonstrates that the sorption is dominated by orbital attractive interactions and modified by steric effects. Greater hydrogen-bonding involvement leads to increased orbital interactions (i.e., more negative energy) from dry to sol/sat complexes, while much larger steric interaction in the sat complex significantly reduces the sorption interaction (i.e., more positive energy). For dry SNC, adsorbates were varied from aquo to aquo-carbonato, to carbonato, to hydroxo uranyl species. Longer U-Osurf/U-Ti distances and more positive sorption energies were calculated upon introducing carbonato and hydroxo ligands, indicative of weaker uranyl sorption onto the substrate. This is consistent with experimental observations that the uranyl sorption rate decreases upon raising solution pH value or adding carbon dioxide. Anatase SNCs adsorbing aquouranyl are even more exothermic, because more bonds are formed than in the case of rutile. Moreover, the anatase sorption can be tuned by surface defects as well as its Ti and O stoichiometry. All the aquouranyl-SNC complexes show similar character of molecular orbitals and energetic order although differing in highest occupied molecular orbital (HOMO)-lowest unoccupied molecular orbital (LUMO) gaps and orbital energy levels, but changes can be accomplished by adding carbonato and hydroxo ligands.

16.
Inorg Chem ; 56(22): 14147-14156, 2017 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-29091408

RESUMO

Two novel three-dimensional interpenetrated uranyl-organic frameworks, (NH4)4[(UO2)4(L1)3]·6H2O (1) and [(UO2)2(H2O)2L2]·2H2O (2), where L1 = tetrakis(3-carboxyphenyl)silicon and L2 = tetrakis(4-carboxyphenyl)silicon, were synthesized by a combination of two isomeric tetrahedral silicon-centered ligands with 3-connected triangular [(UO2)(COO)3]- and 4-connected dinuclear [(UO2)2(COO)4] units, respectively. Structural analyses indicate that 1 possesses a 2-fold interpenetrating anion bor network, while 2 exhibits a 3-fold interpenetrated 4,4-connected neutral network with pts topology. Both compounds were characterized by thermogravimetric analysis and IR, UV-vis, and photoluminescence spectroscopy. A relativistic density functional theory (DFT) investigation on 10 model compounds of 1 and 2 shows good agreement of the structural parameters, stretching vibrational frequencies, and absorption with experimental results; the time-dependent DFT calculations unravel that low-energy absorption bands originate from ligand-to-uranium charge transfer.

17.
Inorg Chem ; 56(3): 1669-1678, 2017 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-28118014

RESUMO

The hydrothermal reaction of uranyl ions with (5-methyl-1,3-phenylene)diphosphonic acid (H4MPDP) in the presence of additives such as nitric acid, N-bearing species, and heterometal ions yielded five new uranyl organic hybrids: (H3O)[(UO2)5(H2O)4(H3DPB)2(H2DPB)(HDPB)]·2H2O (1), (Hphen)(phen)[(UO2)3(H2DPB)(HDPB)] (2), (H2dipy)[(UO2)3(MPDP)2] (3), Zn(bipy)(UO2)(MPDP) (4), and Co(bipy)(UO2)(MPDP)·H2O (5) (H5DPB = 3,5-diphosphonobenzoic acid; phen = 1,10-phenanthroline; dipy = 4,4'-bipyridine; bipy = 2,2'-bipyridine). Single-crystal X-ray diffraction (XRD) demonstrates that 1 and 2 are 3D frameworks constructed of uranyl centers and carboxyphosphonate DPB ligands; the latter were formed via the in situ oxidation of H4MPDP. In the homometallic uranyl diphosphonate 3, less common UO6 square bipyramids connected by MPDP ligands were incorporated to form the 2D assembly. A further introduction of heterometal ions produced two heterobimetallic uranyl phosphonates 4 and 5. Both of them show layered structures, formed by UO6 square bipyramids linked by MPDP ligands with heterometal-centered polyhedra decorated on the sides of the layers. It is found that the pH and heterometal ions have significant effects on the structures of the complexes. In addition to the syntheses and XRD characterization, the spectroscopic properties of these uranyl complexes were also addressed. To complement the experimental results, density functional theory calculations were carried out on several model complexes that feature a homo- or heterobimetallic molecular skeleton. Geometrical/electronic structures, IR spectra, and electronic absorptions were discussed.

18.
Inorg Chem ; 55(11): 5540-8, 2016 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-27171364

RESUMO

Two 3D uranyl organic frameworks (UOFs) with entangled structures, (HPhen)2[(UO2)2L2]·4.5H2O (1) and [(UO2)3(H2O)4L2]·6H2O (2), were synthesized using a rigid tripodal linker (4,4',4″-(phenylsilanetriyl)tribenzoic acid, H3L). Compound 1 represents a 2-fold interpenetrating UOF with the unique (10,3)-b topology. Compound 2 is composed of three interlocked sets of identical singlet networks and thus exhibits a rare 3D polythreading network with (3,4)-connected topology. These two compounds have been characterized by IR, UV-vis, and photoluminescent spectroscopy. A density functional theory (DFT) study on the model compounds of 1 and 2 shows good agreement of structural parameters and U═O stretching vibrational frequencies with experimental data. The experimentally measured absorption bands were well reproduced by the time-dependent DFT calculations.

19.
Inorg Chem ; 54(11): 5438-49, 2015 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-25955709

RESUMO

On the basis of relativistic density functional theory calculations, homo- and heterovalent binuclear uranium complexes of a polypyrrolic macrocycle in a U-O-U bridging fashion have been investigated. These complexes show a variety of oxidation states for uranium ranging from III to VI, which have been confirmed by the calculated electron-spin density on each metal center. An equatorially 5-fold uranyl coordination mode is suitable for hexavalent uranium complexes, while silylation of the uranyl oxo is favored by pentavalent uranium. Uranyl oxo ligands are not required anymore for the coordination environment of tetra- and trivalent uranium because of their replacement by strong donors such as tetrahydrofuran and iodine. Optimization of binuclear U(VI)-U(III) complexes with various coordinating modes of U(III), donor numbers, and donor types reveals that 0.5-1.0 electron has been transferred from U(III) to U(VI). Consequently, U(V)-U(IV) complexes are more favorable. Electronic structures and formation reactions of several representative uranium complexes were calculated. For example, a 5f-based σ(U-U) bonding orbital is found in the diuranium(IV) complex, rationalizing the fact that it shows the shortest U-U distance (3.82 Å) among the studied binuclear complexes.

20.
Inorg Chem ; 53(20): 11068-74, 2014 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-25278439

RESUMO

A family of di-, tri-, and tetranuclear copper(I) complexes supported by length-controlled silaamidinate ligands have been synthesized to show short Cu(I)-Cu(I) distances (2.43-2.62 Å) and feature a linear or bent metal-metal arrangement, which is elucidated by a relativistic density functional theory calculation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA