Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 119
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Curr Issues Mol Biol ; 46(6): 5595-5613, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38921006

RESUMO

Multiple sclerosis (MS) is a chronic autoimmune demyelinating disease of the central nervous system, the etiology of which is still unclear. Its hallmarks are inflammation and axonal damage. As a disease primarily impacting younger individuals, the social cost of MS is high. It has been proposed that environmental factors, smoking, and dietary habits acting on a genetic susceptibility play a role in MS. Recent studies indicate that diet can significantly influence the onset and progression of MS. This review delves into the impact of natural bioactive molecules on MS development and explores the dietary interventions that hold promise in managing the disease. Dietary patterns, including ketogenic and Mediterranean diets, are discussed. Theories about the potential mechanistic associations beneath the noted effects are also proposed. Several dietary components and patterns demonstrated the potential for a significant impact on MS. However, extensive prospective clinical trials are necessary to fully understand the role of natural bioactive molecules as disease modifiers in MS.

2.
Int J Mol Sci ; 24(18)2023 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-37762196

RESUMO

Kidney disease is a global health and healthcare burden. Glomerulonephritis (Gn), both primary and secondary, is generally characterized by an inflammatory glomerular injury and may lead to end-stage renal disease. Kidney biopsy is fundamental to the diagnosis; however, kidney biopsy presents some concerns that may partly hamper the clinical process. Therefore, more accurate diagnostic tools are needed. Extracellular vesicles (EVs) are membranous vesicles released by cells and found in bodily fluids, including urine. EVs mediate intercellular signaling both in health and disease. EVs can have both harmful and cytoprotective effects in kidney diseases, especially Gn. Previous findings reported that the specific cargo of urinary EV contains an aerobic metabolic ability that may either restore the recipient cell metabolism or cause oxidative stress production. Here, we provide an overview of the most recent proteomic findings on the role of EVs in several aspects of glomerulopathies, with a focus on this metabolic and redox potential. Future studies may elucidate how the ability of EVs to interfere with aerobic metabolism and redox status can shed light on aspects of Gn etiology which have remained elusive so far.


Assuntos
Vesículas Extracelulares , Glomerulonefrite , Glomerulosclerose Segmentar e Focal , Nefropatias , Humanos , Glomerulosclerose Segmentar e Focal/patologia , Proteômica , Glomerulonefrite/patologia , Nefropatias/patologia , Vesículas Extracelulares/patologia , Biomarcadores , Rim/patologia
3.
Int J Mol Sci ; 24(4)2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36834840

RESUMO

Though electrical stimulation is used as a therapeutic approach to treat retinal and spinal injuries, many protective mechanisms at cellular level have not been elucidated. We performed a detailed analysis of cellular events in blue light (Li) stressed 661W cells, which were subjected to direct current electric field (EF) stimulation. Our findings revealed that EF stimulation induced protective effects in 661W cells from Li-induced stress by multiple defense mechanisms, such as increase in mitochondrial activity, gain in mitochondrial potential, increase in superoxide levels, and the activation of unfolded protein response (UPR) pathways, all leading to an enhanced cell viability and decreased DNA damage. Here, our genetic screen results revealed the UPR pathway to be a promising target to ameliorate Li-induced stress by EF stimulation. Thus, our study is important for a knowledgeable transfer of EF stimulation into clinical application.


Assuntos
Retina , Resposta a Proteínas não Dobradas , Linhagem Celular , Mitocôndrias , Estimulação Elétrica , Luz
4.
Molecules ; 28(17)2023 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-37687012

RESUMO

Polyphenols have attracted attention in the fight against antibiotic-resistant bacteria, as they show antibacterial action. Considering that polyphenols inhibit F1Fo-ATP synthase (ATP synthase) and that bacteria need a constant energy production to maintain their homeostasis, we evaluated the effect of two flavones, cirsiliol (tri-hy-droxy-6,7-dimethoxyflavone) and quercetin (3,3,4,5,7-pentahydroxyflavone), on energy production and intracellular ATP content in a methicillin-resistant Staphylococcus aureus (MRSA) strain and a methicillin-resistant Staphylococcus epidermidis (MRSE) strain isolated from patients, comparing the results to those obtained by treating the bacteria with oligomycin, a specific ATP synthase Fo moiety inhibitor. Real-time quantitative ATP synthesis and total ATP content of permeabilized Gram-positive bacteria were assayed by luminometry. The results showed that cirsiliol and quercetin inhibited ATP synthase and decreased the intracellular ATP levels in both strains, although the effect was higher in MRSE. In addition, while cirsiliol and quercetin acted immediately after the treatment, oligomycin inhibited ATP synthesis only after 30 min of incubation, suggesting that the different responses may depend on the different permeability of the bacterial wall to the three molecules. Thus, cirsiliol and quercetin could be considered potential additions to antibiotics due to their ability to target ATP synthase, against which bacteria cannot develop resistance.


Assuntos
Flavonas , Staphylococcus aureus Resistente à Meticilina , Humanos , Quercetina/farmacologia , Staphylococcus epidermidis , Resistência a Meticilina , Polifenóis , Trifosfato de Adenosina , Antibacterianos/farmacologia
5.
J Cell Biochem ; 123(8): 1281-1284, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35838055

RESUMO

COVID-19 has been proposed to be an endothelial disease, as endothelial damage and oxidative stress contribute to its systemic inflammatory and thrombotic events. Polyphenols, natural antioxidant compounds appear as promising agents to prevent and treat COVID-19. Polyphenols bind and inhibit the F1 Fo -ATP synthase rotary catalysis. An early target of polyphenols may be the ectopic F1 Fo -ATP synthase expressed on the endothelial plasma membrane. Among the pleiotropic beneficial action of polyphenols in COVID-19, modulation of the ecto-F1 Fo -ATP synthase, lowering the oxidative stress produced by the electron transfer chain coupled to it, would not be negligible.


Assuntos
Tratamento Farmacológico da COVID-19 , Polifenóis , Trifosfato de Adenosina/metabolismo , Membrana Celular/metabolismo , Humanos , ATPases Mitocondriais Próton-Translocadoras/metabolismo , Polifenóis/farmacologia , Polifenóis/uso terapêutico , ATPases Translocadoras de Prótons/metabolismo
6.
Int J Mol Sci ; 23(3)2022 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-35163068

RESUMO

MerTK (Mer Tyrosine Kinase) is a cell surface receptor that regulates phagocytosis of photoreceptor outer segments (POS) in retinal pigment epithelial (RPE) cells. POS phagocytosis is impaired in several pathologies, including diabetes. In this study, we investigate whether hyperglycemic conditions may affect MerTK expression and activation in ARPE-19 cells, a retinal pigment epithelial cellular model. ARPE-19 cells were cultured in standard (CTR) or high-glucose (HG) medium for 24 h. Then, we analyzed: mRNA levels and protein expression of MerTK and ADAM9, a protease that cleaves the extracellular region of MerTK; the amount of cleaved Mer (sMer); and the ability of GAS6, a MerTK ligand, to induce MerTK phosphorylation. Since HG reduces miR-126 levels, and ADAM9 is a target of miR-126, ARPE-19 cells were transfected with miR-126 inhibitor or mimic; then, we evaluated ADAM9 expression, sMer, and POS phagocytosis. We found that HG reduced expression and activation of MerTK. Contextually, HG increased expression of ADAM9 and the amount of sMer. Overexpression of miR-126 reduced levels of sMer and improved phagocytosis in ARPE-19 cells cultured with HG. In this study, we demonstrate that HG compromises MerTK expression and activation in ARPE-19 cells. Our results suggest that HG up-regulates ADAM9 expression, leading to increased shedding of MerTK. The consequent rise in sMer coupled to reduced expression of MerTK impairs binding and internalization of POS in ARPE-19 cells.


Assuntos
Proteínas ADAM/genética , Proteínas ADAM/metabolismo , Glucose/efeitos adversos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Epitélio Pigmentado da Retina/citologia , c-Mer Tirosina Quinase/genética , c-Mer Tirosina Quinase/metabolismo , Técnicas de Cultura de Células , Linhagem Celular , Regulação para Baixo , Ativação Enzimática/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , MicroRNAs/genética , Fagocitose , Fosforilação , Segmento Externo das Células Fotorreceptoras da Retina/metabolismo , Epitélio Pigmentado da Retina/efeitos dos fármacos , Epitélio Pigmentado da Retina/metabolismo
7.
J Neurosci Res ; 99(9): 2250-2260, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34085315

RESUMO

The nervous system displays high energy consumption, apparently not fulfilled by mitochondria, which are underrepresented therein. The oxidative phosphorylation (OxPhos) activity, a mitochondrial process that aerobically provides ATP, has also been reported also in the myelin sheath and the rod outer segment (OS) disks. Thus, commonalities and differences between the extra-mitochondrial and mitochondrial aerobic metabolism were evaluated in bovine isolated myelin (IM), rod OS, and mitochondria-enriched fractions (MIT). The subcellular fraction quality and the absence of contamination fractions have been estimated by western blot analysis. Oxygen consumption and ATP synthesis were stimulated by conventional (pyruvate + malate or succinate) and unconventional (NADH) substrates, observing that oxygen consumption and ATP synthesis by IM and rod OS are more efficient than by MIT, in the presence of both kinds of respiratory substrates. Mitochondria did not utilize NADH as a respiring substrate. When ATP synthesis by either sample was assayed in the presence of 10-100 µM ATP in the assay medium, only in IM and OS it was not inhibited, suggesting that the ATP exportation by the mitochondria is limited by extravesicular ATP concentration. Interestingly, IM and OS but not mitochondria appear able to synthesize ATP at a later time with respect to exposure to respiratory substrates, supporting the hypothesis that the proton gradient produced by the electron transport chain is buffered by membrane phospholipids. The putative transfer mode of the OxPhos molecular machinery from mitochondria to the extra-mitochondrial structures is also discussed, opening new perspectives in the field of neurophysiology.


Assuntos
Trifosfato de Adenosina/biossíntese , Membrana Celular/metabolismo , Mitocôndrias/metabolismo , Neurônios/metabolismo , Prosencéfalo/metabolismo , Retina/metabolismo , Trifosfato de Adenosina/administração & dosagem , Animais , Bovinos , Membrana Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Feminino , Masculino , Mitocôndrias/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Consumo de Oxigênio/efeitos dos fármacos , Consumo de Oxigênio/fisiologia , Prosencéfalo/efeitos dos fármacos , Retina/efeitos dos fármacos
8.
FASEB J ; 34(5): 6322-6334, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32162735

RESUMO

Maternal nutrition during pregnancy influences offspring health. Dietary supplementation of pregnant women with (n-3) long-chain polyunsaturated fatty acids (PUFA) was shown to exert beneficial effects on offspring, through yet unknown mechanisms. Here, we conducted a dietary intervention study on a cohort of 10 women diagnosed with threatened preterm labor with a nutritional integration with eicosapentaenoic and docosahexaenoic acids. Microvesicles (MV) isolated form arterial cord blood of the treated cohort offspring and also of a randomized selection of 10 untreated preterm and 12 term newborns, were characterized by dynamic light scattering and analyzed by proteomic and statistical analysis. Glutathione synthetase was the protein bearing the highest discrimination ability between cohorts. ELISA assay showed that glutathione synthetase was more abundant in cord blood from untreated preterm compared to the other conditions. Assay of free SH-groups showed that serum of preterm subjects was oxidized. Data suggest that preterm suffer from oxidative stress, which was lower in the treated cohort. This study confirms that MV are a representative sample of the individual status and the efficacy of dietary intervention with PUFA in human pregnancy in terms of lowered inflammatory status, increased gestational age and weight at birth.


Assuntos
Suplementos Nutricionais , Ácidos Graxos Ômega-3/administração & dosagem , Trabalho de Parto Prematuro/prevenção & controle , Nascimento Prematuro/dietoterapia , Proteoma/análise , Adulto , Feminino , Idade Gestacional , Humanos , Recém-Nascido , Fenômenos Fisiológicos da Nutrição Materna , Trabalho de Parto Prematuro/metabolismo , Gravidez , Nascimento Prematuro/metabolismo , Nascimento Prematuro/patologia , Proteoma/metabolismo , Adulto Jovem
9.
Cell Biochem Funct ; 39(4): 528-535, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33472276

RESUMO

Uncontrolled oxidative stress production, especially in the outer retina is one of the causes of retinal degenerations. Mitochondria are considered the principal source of oxidative stress. However, a Reactive Oxygen Intermediates (ROI) production in the retinal photoreceptor layer seems to depend also on the expression of an extramitochondrial oxidative phosphorylation (OxPhos) machinery in the rod outer segments (OS). In fact, OS conduct aerobic metabolism, producing ATP through oxygen consumption, although it is devoid of mitochondria. As diterpenes display an antioxidant effect, we have evaluated the effect Manool, extracted from Salvia tingitana, on the extramitochondrial OxPhos and the ROI production in the retinal rod OS. Results confirm that the OxPhos machinery is ectopically expressed in the OS and that F1 Fo -ATP synthase is a target of Manool, which inhibited the OS ATP synthesis, binding the F1 moiety with high affinity, as analysed by molecular docking. Moreover, the overall slowdown of OxPhos metabolism reduced the ROI production elicited in the OS by light exposure, in vitro. In conclusion, data are consistent with the antioxidant properties of Salvia spp., suggesting its ability to lower oxidative stress production, a primary risk factor for degenerative retinal diseases. SIGNIFICANCE OF THE STUDY: Here we show that Manool, a diterpene extracted from Salvia tingitana has the potential to lower the free radical production by light-exposed rod outer segments in vitro, by specifically targeting the rod OS F1 Fo -ATP synthase belonging to the extramitochondrial OxPhos expressed on the disk membrane. The chosen experimental model allowed to show that the rod OS is a primary producer of oxidative stress linked to the pathogenesis of degenerative retinal diseases. Data are also consistent with the antioxidant and anti-inflammatory action of Salvia spp., suggesting a beneficial effect also in vivo.


Assuntos
Antioxidantes/farmacologia , Diterpenos/farmacologia , Inibidores Enzimáticos/farmacologia , ATPases Translocadoras de Prótons/antagonistas & inibidores , Segmento Externo das Células Fotorreceptoras da Retina/efeitos dos fármacos , Salvia/química , Animais , Antioxidantes/química , Antioxidantes/isolamento & purificação , Bovinos , Diterpenos/química , Diterpenos/isolamento & purificação , Inibidores Enzimáticos/química , Inibidores Enzimáticos/isolamento & purificação , Radicais Livres/antagonistas & inibidores , Radicais Livres/metabolismo , Modelos Moleculares , Estresse Oxidativo/efeitos dos fármacos , ATPases Translocadoras de Prótons/genética , ATPases Translocadoras de Prótons/metabolismo , Segmento Externo das Células Fotorreceptoras da Retina/metabolismo
10.
Int J Mol Sci ; 22(12)2021 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-34208371

RESUMO

Metformin (MTF) is the first-line therapy for type 2 diabetes (T2DM). The euglycemic effect of MTF is due to the inhibition of hepatic glucose production. Literature reports that the principal molecular mechanism of MTF is the activation of 5'-AMP-activated protein kinase (AMPK) due to the decrement of ATP intracellular content consequent to the inhibition of Complex I, although this effect is obtained only at millimolar concentrations. Conversely, micromolar MTF seems to activate the mitochondrial electron transport chain, increasing ATP production and limiting oxidative stress. This evidence sustains the idea that MTF exerts a hormetic effect based on its concentration in the target tissue. Therefore, in this review we describe the effects of MTF on T2DM on the principal target organs, such as liver, gut, adipose tissue, endothelium, heart, and skeletal muscle. In particular, data indicate that all organs, except the gut, accumulate MTF in the micromolar range when administered in therapeutic doses, unmasking molecular mechanisms that do not depend on Complex I inhibition.


Assuntos
Hormese/efeitos dos fármacos , Metformina/farmacologia , Animais , Humanos , Modelos Biológicos , Especificidade de Órgãos/efeitos dos fármacos
11.
Molecules ; 26(14)2021 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-34299531

RESUMO

Liquid-chromatography coupled to high resolution mass spectrometry (LC-HRMS) is currently the method of choice for untargeted metabolomic analysis. The availability of established protocols to achieve a high confidence identification of metabolites is crucial. The aim of this work is to describe the workflow that we have applied to build an Accurate Mass Retention Time (AMRT) database using a commercial metabolite library of standards. LC-HRMS analysis was carried out using a Vanquish Horizon UHPLC system coupled to a Q-Exactive Plus Hybrid Quadrupole-Orbitrap Mass Spectrometer (Thermo Fisher Scientific, Milan, Italy). The fragmentation spectra, obtained with 12 collision energies, were acquired for each metabolite, in both polarities, through flow injection analysis. Several chromatographic conditions were tested to obtain a protocol that yielded stable retention times. The adopted chromatographic protocol included a gradient separation using a reversed phase (Waters Acquity BEH C18) and a HILIC (Waters Acquity BEH Amide) column. An AMRT database of 518 compounds was obtained and tested on real plasma and urine samples analyzed in data-dependent acquisition mode. Our AMRT library allowed a level 1 identification, according to the Metabolomics Standards Initiative, of 132 and 124 metabolites in human pediatric plasma and urine samples, respectively. This library represents a starting point for future metabolomic studies in pediatric settings.


Assuntos
Metabolômica/métodos , Plasma/química , Urina/química , Adolescente , Criança , Pré-Escolar , Cromatografia Líquida de Alta Pressão/métodos , Feminino , Humanos , Masculino , Espectrometria de Massas/métodos , Urinálise/métodos
12.
Expert Rev Proteomics ; 17(10): 735-749, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33395324

RESUMO

Introduction: Exosomes are nanovesicles that play important functions in a variety of physiological and pathological conditions. They are powerful cell-to-cell communication tool thanks to the protein, mRNA, miRNA, and lipid cargoes they carry. They are also emerging as valuable diagnostic and prognostic biomarker sources. Urinary exosomes carry information from all the cells of the urinary tract, downstream of the podocyte. Rare kidney diseases are a subset of an inherited diseases whose genetic diagnosis can be unclear, and presentation can vary due to genetic, epigenetic, and environmental factors. Areas covered: In this review, we focus on a group of rare and often neglected kidney diseases, for which we have sufficient available literature data on urinary exosomes. The analysis of their content can help to comprehend pathological mechanisms and to identify biomarkers for diagnosis, prognosis, and therapeutic targets. Expert opinion: The foreseeable large-scale application of system biology approach to the profiling of exosomal proteins as a source of renal disease biomarkers will be also useful to stratify patients with rare kidney diseases whose penetrance, phenotypic presentation, and age of onset vary sensibly. This can ameliorate the clinical management.


Assuntos
Exossomos/metabolismo , Nefropatias/metabolismo , Nefropatias/urina , Biomarcadores/urina , Humanos , MicroRNAs/urina , RNA Mensageiro/urina , Biologia de Sistemas/métodos
13.
J Nat Prod ; 83(4): 1027-1042, 2020 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-32182064

RESUMO

A surface extract of the aerial parts of Salvia tingitana afforded a nor-sesterterpenoid (1) and eight new sesterterpenoids (2-̵9), along with five known sesterterpenoids, five labdane and one abietane diterpenoid, one sesquiterpenoid, and four flavonoids. The structures of the new compounds were established by 1D and 2D NMR spectroscopy, HRESIMS, and VCD data and Mosher's esters analysis. The antimicrobial activity of compounds was evaluated against 30 human pathogens including 27 clinical strains and three isolates of marine origin for their possible implications on human health. The methyl ester of salvileucolide (10), salvileucolide-6,23-lactone (11), sclareol (15), and manool (17) were the most active against Gram-positive bacteria. The compounds were also tested for the inhibition of ATP production in purified mammalian rod outer segments. Terpenoids 10, 11, 15, and 17 inhibited ATP production, while only 17 inhibited also ATP hydrolysis. Molecular modeling studies confirmed the capacity of 17 to interact with mammalian ATP synthase. A significant reduction of ATP production in the presence of 17 was observed in Enterococcus faecalis and E. faecium isolates.


Assuntos
Abietanos/farmacologia , Antibacterianos/farmacologia , Diterpenos/farmacologia , Abietanos/química , Abietanos/isolamento & purificação , Trifosfato de Adenosina/química , Antibacterianos/isolamento & purificação , Diterpenos/química , Diterpenos/isolamento & purificação , Enterococcus faecalis/efeitos dos fármacos , Flavonoides/farmacologia , Humanos , Lactonas/química , Estrutura Molecular , Componentes Aéreos da Planta/química , Salvia/química
14.
Int J Mol Sci ; 21(7)2020 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-32235464

RESUMO

Potent neuroprotective effects of photobiomodulation with 670 nm red light (RL) have been demonstrated in several models of retinal disease. RL improves mitochondrial metabolism, reduces retinal inflammation and oxidative cell stress, showing its ability to enhance visual function. However, the current knowledge is limited to the main hypothesis that the respiratory chain complex IV, cytochrome c oxidase, serves as the primary target of RL. Here, we demonstrate a comprehensive cellular, molecular, and functional characterization of neuroprotective effects of 670 nm RL and 810 nm near-infrared light (NIRL) on blue light damaged murine primary photoreceptors. We show that respiratory chain complexes I and II are additional PBM targets, besides complex IV, leading to enhanced mitochondrial energy metabolism. Accordingly, our study identified mitochondria related RL- and NIRL-triggered defense mechanisms promoting photoreceptor neuroprotection. The observed improvement of mitochondrial and extramitochondrial respiration in both inner and outer segments is linked with reduced oxidative stress including its cellular consequences and reduced mitochondria-induced apoptosis. Analysis of regulatory mechanisms using gene expression analysis identified upregulation α-crystallins that indicate enhanced production of proteins with protective functions that point to the rescued mitochondrial function. The results support the hypothesis that energy metabolism is a major target for retinal light therapy.


Assuntos
Terapia com Luz de Baixa Intensidade , Neuroproteção/efeitos da radiação , Células Fotorreceptoras de Vertebrados/efeitos da radiação , Degeneração Retiniana/terapia , Animais , Feminino , Raios Infravermelhos/uso terapêutico , Terapia com Luz de Baixa Intensidade/métodos , Masculino , Camundongos Endogâmicos C57BL , Células Fotorreceptoras de Vertebrados/metabolismo , Células Fotorreceptoras de Vertebrados/patologia , Degeneração Retiniana/genética , Degeneração Retiniana/patologia , Regulação para Cima/efeitos da radiação , alfa-Cristalinas/genética
15.
J Neurochem ; 151(3): 336-350, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31282572

RESUMO

Amyotrophic lateral sclerosis is an adult-onset neurodegenerative disease that develops because of motor neuron death. Several mechanisms occur supporting neurodegeneration, including mitochondrial dysfunction. Recently, we demonstrated that the synaptosomes from the spinal cord of SOD1G93A mice, an in vitro model of presynapses, displayed impaired mitochondrial metabolism at early pre-symptomatic stages of the disease, whereas perisynaptic astrocyte particles, or gliosomes, were characterized by mild energy impairment only at symptomatic stages. This work aimed to understand whether mitochondrial impairment is a consequence of upstream metabolic damage. We analyzed the critical pathways involved in glucose catabolism at presynaptic and perisynaptic compartments. Spinal cord and motor cortex synaptosomes from SOD1G93A mice displayed high activity of hexokinase and phosphofructokinase, key glycolysis enzymes, and of citrate synthase and malate dehydrogenase, key Krebs cycle enzymes, but did not display high lactate dehydrogenase activity, the key enzyme in lactate fermentation. This enhancement was evident in the spinal cord from the early stages of the disease and in the motor cortex at only symptomatic stages. Conversely, an increase in glycolysis and lactate fermentation activity, but not Krebs cycle activity, was observed in gliosomes from the spinal cord and motor cortex of SOD1G93A mice although only at the symptomatic stages of the disease. The cited enzymatic activities were enhanced in spinal cord and motor cortex homogenates, paralleling the time-course of the effect observed in synaptosomes and gliosomes. The observed metabolic modifications might be considered an attempt to restore altered energetic balance and indicate that mitochondria represent the ultimate site of bioenergetic impairment.


Assuntos
Esclerose Lateral Amiotrófica/metabolismo , Glucose/metabolismo , Mitocôndrias/metabolismo , Córtex Motor/metabolismo , Medula Espinal/metabolismo , Animais , Astrócitos/metabolismo , Modelos Animais de Doenças , Camundongos Transgênicos , Neurônios Motores/metabolismo , Doenças Neurodegenerativas/metabolismo , Sinapses/metabolismo
16.
Eur J Nucl Med Mol Imaging ; 46(5): 1184-1196, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30617965

RESUMO

PURPOSE: The endoplasmic reticulum (ER) contains hexose-6P-dehydrogenase (H6PD). This enzyme competes with glucose-6P-phosphatase for processing a variety of phosphorylated hexoses including 2DG-6P. The present study aimed to verify whether this ER glucose-processing machinery contributes to brain FDG uptake. METHODS: Effect of the H6PD inhibitor metformin on brain 18F-FDG accumulation was studied, in vivo, by microPET imaging. These data were complemented with the in vitro estimation of the lumped constant (LC). Finally, reticular accumulation of the fluorescent 2DG analogue 2-[N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino]-2-deoxyglucose (2NBDG) and its response to metformin was studied by confocal microscopy in cultured neurons and astrocytes. RESULTS: Metformin halved brain 18F-FDG accumulation without altering whole body tracer clearance. Ex vivo, this same response faced the doubling of both glucose consumption and lactate release. The consequent fall in LC was not explained by any change in expression or activity of its theoretical determinants (GLUTs, hexokinases, glucose-6P-phosphatase), while it agreed with the drug-induced inhibition of H6PD function. In vitro, 2NBDG accumulation selectively involved the ER lumen and correlated with H6PD activity being higher in neurons than in astrocytes, despite a lower glucose consumption. CONCLUSIONS: The activity of the reticular enzyme H6PD profoundly contributes to brain 18F-FDG uptake. These data challenge the current dogma linking 2DG/FDG uptake to the glycolytic rate and introduce a new model to explain the link between 18-FDG uptake and neuronal activity.


Assuntos
Encéfalo/citologia , Encéfalo/metabolismo , Retículo Endoplasmático/metabolismo , Fluordesoxiglucose F18/metabolismo , Animais , Astrócitos/citologia , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Transporte Biológico/efeitos dos fármacos , Encéfalo/diagnóstico por imagem , Encéfalo/efeitos dos fármacos , Desidrogenases de Carboidrato/metabolismo , Retículo Endoplasmático/efeitos dos fármacos , Glicólise/efeitos dos fármacos , Metformina/farmacologia , Camundongos , Camundongos Endogâmicos BALB C , Neurônios/citologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Oxirredução/efeitos dos fármacos , Tomografia por Emissão de Pósitrons
17.
Biol Cell ; 110(5): 97-108, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29537672

RESUMO

BACKGROUND INFORMATION: Energy demand in human platelets is very high, to carry out their functions. As for most human cells, the aerobic metabolism represents the primary energy source in platelets, even though mitochondria are negligibly represented. Following the hypothesis that other structures could be involved in chemical energy production, in this work, we have investigated the functional expression of an extramitochondrial aerobic metabolism in platelets. RESULTS: Oximetric and luminometric analyses showed that platelets consume large amounts of oxygen and produce ATP in the presence of common respiring substrates, such as pyruvate + malate or succinate, although morphological electron microscopy analysis showed that these contain few mitochondria. However, evaluation of the anaerobic glycolytic metabolism showed that only 13% of consumed glucose was converted to lactate. Interestingly, the highest OXPHOS activity was observed in the presence of NADH, not a readily permeant respiring substrate for mitochondria. Also, oxygen consumption and ATP synthesis fuelled by NADH were not affected by atractyloside, an inhibitor of the adenine nucleotide translocase, suggesting that these processes may not be ascribed to mitochondria. Functional data were confirmed by immunofluorescence microscopy and Western blot analyses, showing a consistent expression of the ß subunit of F1 Fo -ATP synthase and COXII, a subunit of Complex IV, but a low signal of translocase of the inner mitochondrial membrane (a protein not involved in OXPHOS metabolism). Interestingly, the NADH-stimulated oxygen consumption and ATP synthesis increased in the presence of the physiological platelets agonists, thrombin or collagen. CONCLUSIONS: Data suggest that in platelets, aerobic energy production is mainly driven by an extramitochondrial OXPHOS machinery, originated inside the megakaryocyte, and that this metabolism plays a pivotal role in platelet activation. SIGNIFICANCE: This work represents a further example of the existence of an extramitochondrial aerobic metabolism, which can contribute to the cellular energy balance.


Assuntos
Plaquetas/fisiologia , Metabolismo Energético , Consumo de Oxigênio , Trifosfato de Adenosina/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Glucose/metabolismo , Glicólise , Voluntários Saudáveis , Humanos , Ácido Láctico/metabolismo , Mitocôndrias/metabolismo , Oxirredução
18.
Lasers Med Sci ; 34(3): 495-504, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30145725

RESUMO

Photobiomodulation of cells using near-infrared (NIR) monochromatic light can affect cell functions such as proliferation, viability, and metabolism in a range of cell types. Evidence for the effects of near-infrared light on endothelial cells has been reported, but the studies were mainly performed using VIS light emitted by low-energy lasers, because NIR wavelengths seemed negatively stimulate these cells. Cell viability, free radical-induced oxidative stress, NF-κB activation, nitric oxide release, mitochondrial respiration, and wound healing repair were assessed in human endothelial cells (HECV) irradiated with 808-nm diode laser light (laser setup = 1 W/cm2, 60 s, 60 J/cm2, CW vs measured energy parameter = 0.95 W/cm2, 60 s, 57 J/cm2, mode CW) emitted by an handpiece with flat-top profile. No difference in viability was detected between controls and HECV cells irradiated with 808-nm diode laser light for 60 s. Irradiated cells demonstrated higher proliferation rate and increased migration ability associated to moderate increase in ROS production without a significant increase in oxidative stress and oxidative stress-activated processes. Near-infrared light stimulated mitochondrial oxygen consumption and ATP synthesis in HECV cells. Short near-infrared irradiation did not affect viability of HECV cells, rather led to a stimulation of wound healing rate, likely sustained by ROS-mediated stimulation of mitochondrial activity. Our results demonstrating that near-infrared led to a shift from anaerobic to aerobic metabolism provide new insight into the possible molecular mechanisms by which photobiomodulation with 808-nm diode laser light protects against inflammation-induced endothelial dysfunction, seemingly promising to enhance their therapeutic properties.


Assuntos
Células Endoteliais/efeitos da radiação , Lasers Semicondutores , Terapia com Luz de Baixa Intensidade , Mitocôndrias/metabolismo , Mitocôndrias/efeitos da radiação , Fosforilação Oxidativa/efeitos da radiação , Espécies Reativas de Oxigênio/metabolismo , Cicatrização/efeitos da radiação , Aerobiose , Linhagem Celular , Proliferação de Células/efeitos da radiação , Sobrevivência Celular/efeitos da radiação , Células Endoteliais/metabolismo , Humanos , Óxido Nítrico/metabolismo
19.
J Proteome Res ; 17(2): 918-925, 2018 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-29299929

RESUMO

The retinal rod outer segment (OS) is a stack of disks surrounded by the plasma membrane, housing proteins related to phototransduction, as well as mitochondrial proteins involved in oxidative phosphorylation (OxPhos). This prompted us to compare the proteome of bovine OS disks and mitochondria to assess the significant top gene signatures of each sample. The two proteomes, obtained by LTQ-Orbitrap Velos mass spectrometry, were compared by statistical analyses. In total, 4139 proteins were identified, 2045 of which overlapping in the two sets. Nonhierarchical Spearman's correlogram revealed that the groups were clearly discriminated. Partial least square discriminant plus support vector machine analysis identified the major discriminative proteins, implied in phototransduction and lipid metabolism, respectively. Gene Ontology analysis identified top gene signatures of the disk proteome, enriched in vesiculation, glycolysis, and OxPhos proteins. The tricarboxylic acid cycle and the electron transport proteins were similarly enriched in the two samples, but the latter was up regulated in disks. Data suggest that the mitochondrial OxPhos proteins may represent a true OS proteome component, outside the mitochondrion. This knowledge may help the scientific community in the further studies of retinal physiology and pathology.


Assuntos
Proteínas do Olho/isolamento & purificação , Mitocôndrias/genética , Proteínas Mitocondriais/isolamento & purificação , Proteoma/isolamento & purificação , Segmento Externo da Célula Bastonete/metabolismo , Animais , Bovinos , Cromatografia Líquida , Ciclo do Ácido Cítrico/genética , Proteínas do Olho/genética , Proteínas do Olho/metabolismo , Ontologia Genética , Glicólise/genética , Análise dos Mínimos Quadrados , Transdução de Sinal Luminoso , Metabolismo dos Lipídeos/genética , Microscopia Eletrônica de Transmissão , Mitocôndrias/metabolismo , Mitocôndrias/ultraestrutura , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Anotação de Sequência Molecular , Fosforilação Oxidativa , Proteoma/genética , Proteoma/metabolismo , Segmento Externo da Célula Bastonete/ultraestrutura , Máquina de Vetores de Suporte , Espectrometria de Massas em Tandem
20.
Expert Rev Proteomics ; 15(10): 801-808, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30253662

RESUMO

INTRODUCTION: Shed by most cells, in response to a myriad of stimuli, extracellular vesicles (EVs) carry proteins, lipids, and various nucleic acids. EVs encompass diverse subpopulations differing for biogenesis and content. Among these, microvesicles (MVs) derived from plasma membrane, are key regulators of physiopathological cellular processes including cancer, inflammation and infection. This review is unique in that it focuses specifically on the MVs as a mediator of information transfer. In fact, few proteomic studies have rigorously distinguished MVs from exosomes. Areas covered: Aim of this review is to discuss the proteomic analyses of the MVs. Many studies have examined mixed populations containing both exosomes and MVs. We discuss MVs' role in cell-specific interactions. We also show their emerging roles in therapy and diagnosis. Expert commentary: We see MVs as therapeutic tools for potential use in precision medicine. They may also have potential for allowing the identification of new biomarkers. MVs represent an invaluable tool for studying the cell of origin, which they closely represent, but it is critical to build a repository with data from MVs to deepen our understanding of their molecular repertoire and biological functions.


Assuntos
Biomarcadores Tumorais/metabolismo , Vesículas Extracelulares/metabolismo , Medicina de Precisão/métodos , Proteômica/métodos , Animais , Humanos , Espectrometria de Massas/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA