Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 151
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Nanobiotechnology ; 20(1): 218, 2022 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-35525963

RESUMO

Acute myocardial infarction (MI) induces a sterile inflammatory response that may result in poor cardiac remodeling and dysfunction. Despite the progress in anti-cytokine biologics, anti-inflammation therapy of MI remains unsatisfactory, due largely to the lack of targeting and the complexity of cytokine interactions. Based on the nature of inflammatory chemotaxis and the cytokine-binding properties of neutrophils, we fabricated biomimetic nanoparticles for targeted and broad-spectrum anti-inflammation therapy of MI. By fusing neutrophil membranes with conventional liposomes, we fabricated biomimetic liposomes (Neu-LPs) that inherited the surface antigens of the source cells, making them ideal decoys of neutrophil-targeted biological molecules. Based on their abundant chemokine and cytokine membrane receptors, Neu-LPs targeted infarcted hearts, neutralized proinflammatory cytokines, and thus suppressed intense inflammation and regulated the immune microenvironment. Consequently, Neu-LPs showed significant therapeutic efficacy by providing cardiac protection and promoting angiogenesis in a mouse model of myocardial ischemia-reperfusion. Therefore, Neu-LPs have high clinical translation potential and could be developed as an anti-inflammatory agent to remove broad-spectrum inflammatory cytokines during MI and other neutrophil-involved diseases.


Assuntos
Citocinas , Neutrófilos , Animais , Anti-Inflamatórios , Biomimética , Modelos Animais de Doenças , Lipopolissacarídeos , Lipossomos , Camundongos
2.
J Nanobiotechnology ; 20(1): 454, 2022 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-36266658

RESUMO

Resolvin D1 (RvD1) has been shown to provide effective protection against ischemia-reperfusion injury in multiple vital organs such as the heart, brain, kidney. However, the clinical translational potential of systemic administration of RvD1 in the treatment of ischemia-reperfusion injury is greatly limited due to biological instability and lack of targeting ability. Combining the natural inflammatory response and reactive oxygen species (ROS) overproduction after reperfusion injury, we developed a platelet-bionic, ROS-responsive RvD1 delivery platform. The resulting formulation enables targeted delivery of RvD1 to the injury site by hijacking circulating chemotactic monocytes, while achieving locally controlled release. In a mouse model of myocardial ischemia repefusuin (MI/R) injury, intravenous injection of our formula resulted in the enrichment of RvD1 in the injured area, which in turn promotes clearance of dead cells, production of specialized proresolving mediators (SPMs), and angiogenesis during injury repair, effectively improving cardiac function. This delivery system integrates drug bio-protection, targeted delivery and controlled release, which endow it with great clinical translational value.


Assuntos
Lipossomos , Traumatismo por Reperfusão Miocárdica , Camundongos , Animais , Espécies Reativas de Oxigênio , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Preparações de Ação Retardada
3.
Molecules ; 27(19)2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-36235009

RESUMO

The development of biomimetic drug delivery systems for biomedical applications has attracted significant research attention. As the use of cell membrane as a surface coating has shown to be a promising platform for several disease treatments. Cell-membrane-coated nanoparticles exhibit enhanced immunocompatibility and prolonged circulation time. Herein, human red blood cell (RBC) membrane-cloaked nanoparticles with enhanced targeting functionality were designed as a targeted nanotheranostic against cancer. Naturally, derived human RBC membrane modified with targeting ligands coated onto polymeric nanoparticle cores containing both chemotherapy and imaging agent. Using epithelial cell adhesion molecule (EpCAM)-positive MCF-7 breast cancer cells as a disease model, the nature-inspired targeted theranostic human red blood cell membrane-coated polymeric nanoparticles (TT-RBC-NPs) platform was capable of not only specifically binding to targeted cancer cells, effectively delivering doxorubicin (DOX), but also visualizing the targeted cancer cells. The TT-RBC-NPs achieved an extended-release profile, with the majority of the drug release occurring within 5 days. The TT-RBC-NPs enabled enhanced cytotoxic efficacy against EpCAM positive MCF-7 breast cancer over the non-targeted NPs. Additionally, fluorescence images of the targeted cancer cells incubated with the TT-RBC-NPs visually indicated the increased cellular uptake of TT-RBC-NPs inside the breast cancer cells. Taken together, this TT-RBC-NP platform sets the foundation for the next-generation stealth theranostic platforms for systemic cargo delivery for treatment and diagnostic of cancer.


Assuntos
Neoplasias da Mama , Nanopartículas , Biomimética , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/tratamento farmacológico , Doxorrubicina , Sistemas de Liberação de Medicamentos/métodos , Molécula de Adesão da Célula Epitelial/análise , Membrana Eritrocítica , Feminino , Humanos , Nanopartículas/química , Medicina de Precisão , Nanomedicina Teranóstica/métodos
4.
Small ; 16(22): e2001704, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32338436

RESUMO

Although cancer immunotherapy has emerged as a tremendously promising cancer therapy method, it remains effective only for several cancers. Photoimmunotherapy (e.g., photodynamic/photothermal therapy) could synergistically enhance the immune response of immunotherapy. However, excessively generated immunogenicity will cause serious inflammatory response syndrome. Herein, biomimetic magnetic nanoparticles, Fe3 O4 -SAS @ PLT, are reported as a novel approach to sensitize effective ferroptosis and generate mild immunogenicity, enhancing the response rate of non-inflamed tumors for cancer immunotherapy. Fe3 O4 -SAS@PLT are built from sulfasalazine (SAS)-loaded mesoporous magnetic nanoparticles (Fe3 O4 ) and platelet (PLT) membrane camouflage and triggered a ferroptotic cell death via inhibiting the glutamate-cystine antiporter system Xc- pathway. Fe3 O4 -SAS @ PLT-mediated ferroptosis significantly improves the efficacy of programmed cell death 1 immune checkpoint blockade therapy and achieves a continuous tumor elimination in a mouse model of 4T1 metastatic tumors. Proteomics studies reveal that Fe3 O4 -SAS @ PLT-mediated ferroptosis could not only induce tumor-specific immune response but also efficiently repolarize macrophages from immunosuppressive M2 phenotype to antitumor M1 phenotype. Therefore, the concomitant of Fe3 O4 -SAS @ PLT-mediated ferroptosis with immunotherapy are expected to provide great potential in the clinical treatment of tumor metastasis.


Assuntos
Ferroptose , Nanopartículas de Magnetita , Nanopartículas , Neoplasias , Animais , Imunoterapia , Magnetismo , Camundongos , Neoplasias/terapia
5.
Stem Cells ; 37(5): 663-676, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30779865

RESUMO

Poor cell homing limits the efficacy of cardiac cellular therapy. The homing peptide, cysteine-arginine-glutamic acid-lysine-alanine (CREKA), targets fibrin effectively which is involved in the repair process of tissue injury. Here, we assessed if CREKA-modified stem cells had enhanced fibrin-mediated homing ability resulting in better functional recovery and structural preservation in a rat myocardial injury model. CREKA-modified mesenchymal stem cells (CREKA-MSCs) were obtained via membrane fusion with CREKA-modified liposomes. The fibrin targeting ability of CREKA-MSCs was examined both in vitro and in vivo. Under both static and flow conditions in vitro, CREKA significantly enhanced MSCs binding ability to fibrin clots (2.6- and 2.3-fold, respectively). CREKA-MSCs showed 6.5-fold higher accumulation than unmodified MSCs in injured rat myocardium one day after administration, resulting in better structural preservation and functional recovery. Fibrin is, therefore, a novel target for enhancing homing of transplanted cells to injured myocardium, and the delivery system of fibrin-targeting is on behalf of a universalizable platform technology for regenerative medicine. Stem Cells 2019;37:663-676.


Assuntos
Sistemas de Liberação de Medicamentos , Transplante de Células-Tronco Mesenquimais , Isquemia Miocárdica/terapia , Traumatismo por Reperfusão/terapia , Animais , Modelos Animais de Doenças , Fibrina/antagonistas & inibidores , Fibrina/genética , Fibrina/farmacologia , Humanos , Células-Tronco Mesenquimais/citologia , Isquemia Miocárdica/genética , Isquemia Miocárdica/patologia , Miocárdio/patologia , Nanopartículas/química , Oligopeptídeos/farmacologia , Ratos , Traumatismo por Reperfusão/genética , Traumatismo por Reperfusão/patologia
6.
Nano Lett ; 19(1): 124-134, 2019 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-30521345

RESUMO

The targeted delivery of therapeutics to sites of rheumatoid arthritis (RA) has been a long-standing challenge. Inspired by the intrinsic inflammation-targeting capacity of macrophages, a macrophage-derived microvesicle (MMV)-coated nanoparticle (MNP) was developed for targeting RA. The MMV was efficiently produced through a novel method. Cytochalasin B (CB) was applied to relax the interaction between the cytoskeleton and membrane of macrophages, thus stimulating MMV secretion. The proteomic profile of the MMV was analyzed by iTRAQ (isobaric tags for relative and absolute quantitation). The MMV membrane proteins were similar to those of macrophages, indicating that the MMV could exhibit bioactivity similar to that of RA-targeting macrophages. A poly(lactic- co-glycolic acid) (PLGA) nanoparticle was subsequently coated with MMV, and the inflammation-mediated targeting capacity of the MNP was evaluated both in vitro and in vivo. The in vitro binding of MNP to inflamed HUVECs was significantly stronger than that of the red blood cell membrane-coated nanoparticle (RNP). Compared with bare NP and RNP, MNP showed a significantly enhanced targeting effect in vivo in a collagen-induced arthritis (CIA) mouse model. The targeting mechanism was subsequently revealed according to the proteomic analysis, indicating that Mac-1 and CD44 contributed to the outstanding targeting effect of the MNP. A model drug, tacrolimus, was encapsulated in MNP (T-RNP) and significantly suppressed the progression of RA in mice. The present study demonstrates MMV as a promising and rich material, with which to mimic macrophages, and demonstrates that MNP is an efficient biomimetic vehicle for RA targeting and treatment.


Assuntos
Artrite Experimental/tratamento farmacológico , Artrite Reumatoide/tratamento farmacológico , Nanopartículas/administração & dosagem , Proteômica , Animais , Artrite Reumatoide/patologia , Citocalasina B/química , Modelos Animais de Doenças , Eritrócitos/química , Eritrócitos/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana , Humanos , Receptores de Hialuronatos/genética , Antígeno de Macrófago 1/genética , Macrófagos/química , Camundongos , Nanopartículas/química , Poliésteres/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Tacrolimo
7.
Nanomedicine ; 15(1): 13-24, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30171903

RESUMO

Although certain success has been achieved in atherosclerosis treatment, tremendous challenges remain in developing more efficient strategies to treat atherosclerosis. Platelets have inherent affinity to plaques and naturally home to atherosclerotic sites. Rapamycin features potent anti-atherosclerosis effect, but its clinical utility is limited by its low concentration at the atherosclerotic site and severe systemic toxicity. In the present study, we used platelet membrane-coated nanoparticles (PNP) as a targeted drug delivery platform to treat atherosclerosis through mimicking platelets' inherent targeting to plaques. PNP displayed 4.98-fold greater radiant efficiency than control nanoparticles in atherosclerotic arterial trees, indicating its effective homing to atherosclerotic plaques in vivo. In an atherosclerosis model established in apolipoprotein E-deficient mice, PNP encapsulating rapamycin significantly attenuated the progression of atherosclerosis and stabilized atherosclerotic plaques. These results demonstrated the perfect efficacy and pro-resolving potential of PNP as a targeted drug delivery platform for atherosclerosis treatment.


Assuntos
Aterosclerose/tratamento farmacológico , Plaquetas/fisiologia , Sistemas de Liberação de Medicamentos , Nanopartículas/administração & dosagem , Placa Aterosclerótica/tratamento farmacológico , Sirolimo/farmacologia , Animais , Apolipoproteínas E/genética , Apolipoproteínas E/fisiologia , Aterosclerose/genética , Aterosclerose/patologia , Membrana Celular/química , Membrana Celular/metabolismo , Células Cultivadas , Imunossupressores/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Nanopartículas/química , Placa Aterosclerótica/genética , Placa Aterosclerótica/patologia , Adesividade Plaquetária
8.
Pharmacol Res ; 132: 211-219, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29274786

RESUMO

Blood perfusion was always lower in tumor tissues as compared with that in surrounding normal tissues which lead to inadequate nanomedicine delivery to tumors. Inspired by the upregulation of both endothelin-1 (ET1) and its ETA receptor in tumor tissues and the crucial contribution of ET1-ETA receptor signaling to maintain myogenic tone of tumor vessels, we supposed that inhibition of ET1-ETA receptor signaling might selectively improve tumor perfusion and help deliver nanomedicine to tumors. Using human U87 MG glioblastomas with abundant vessels as the tumor model, immunofluorescence staining demonstrated that ETA receptor was overexpressed by in glioblastomas tissues compared with normal brain tissues. A single administration of ETA receptor antagonist BQ123 at the dose of 0.5 mg/kg could effectively improve tumor perfusion which was evidenced by in vivo photoacoustic imaging. Additionally, a single treatment of BQ123 could significantly improve the accumulation of nanoparticles (NPs) around 115 nm in tumors with a more homogeneous distribution pattern by in vivo imaging, ex vivo imaging as well as in vivo distribution experiments. Furthermore, BQ123 successfully increased the therapeutic benefits of paclitaxel-loaded NPs and significantly elongated the survival time of orthotropic glioblastomas-bearing animal models. In summary, the present study provided a new strategy to selectively improve tumor perfusion and therefore benefit nanomedicine delivery for tumor therapy. As ET1-ETA receptor signaling was upregulated in a variety of tumors, this strategy might open a new avenue for tumor treatment.


Assuntos
Antineoplásicos Fitogênicos/administração & dosagem , Antagonistas dos Receptores de Endotelina/administração & dosagem , Glioblastoma/tratamento farmacológico , Nanopartículas/administração & dosagem , Paclitaxel/administração & dosagem , Peptídeos Cíclicos/administração & dosagem , Animais , Antineoplásicos Fitogênicos/farmacocinética , Linhagem Celular Tumoral , Sistemas de Liberação de Medicamentos , Antagonistas dos Receptores de Endotelina/farmacocinética , Glioblastoma/metabolismo , Humanos , Masculino , Camundongos Endogâmicos BALB C , Camundongos Nus , Paclitaxel/farmacocinética
9.
Adv Funct Mater ; 26(10): 1628-1635, 2016 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-27325913

RESUMO

With the rising threat of antibiotic-resistant bacteria, vaccination is becoming an increasingly important strategy to prevent and manage bacterial infections. Made from deactivated bacterial toxins, toxoid vaccines are widely used in the clinic as they help to combat the virulence mechanisms employed by different pathogens. Herein, the efficacy of a biomimetic nanoparticle-based anti-virulence vaccine is examined in a mouse model of methicillin-resistant Staphylococcus aureus (MRSA) skin infection. Vaccination with nanoparticle-detained staphylococcal α-hemolysin (Hla) effectively triggers the formation of germinal centers and induces high anti-Hla titers. Compared to mice vaccinated with control samples, those vaccinated with the nanoparticle toxoid show superior protective immunity against MRSA skin infection. The vaccination not only inhibits lesion formation at the site of bacterial challenge, but also reduces the invasiveness of MRSA, preventing dissemination into other organs. Overall, this biomimetic nanoparticle-based toxin detainment strategy is a promising method for the design of potent anti-virulence vaccines for managing bacterial infections.

10.
Mol Pharm ; 11(8): 2755-63, 2014 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-24983928

RESUMO

Gliomas are hard to treat because of the two barriers involved: the blood-brain barrier and blood-tumor barrier. In this study, a dual-targeting ligand, angiopep-2, and an activatable cell-penetrating peptide (ACP) were functionalized onto nanoparticles for glioma-targeting delivery. The ACP was constructed by conjugating RRRRRRRR (R8) with EEEEEEEE through a matrix metalloproteinase-2 (MMP-2)-sensitive linker. ACP modification effectively enhanced the C6 cellular uptake because of the high expression of MMP-2 on C6 cells. The uptake was inhibited by batimastat, an MMP-2 inhibitor, suggesting that the cell-penetrating property of the ACP was activated by MMP-2. By combining the dual-targeting delivery effect of angiopep-2 and activatable cell-penetrating property of the ACP, the dual-modified nanoparticles (AnACNPs) displayed higher glioma localization than that of single ligand-modified nanoparticles. After loading with docetaxel, a common chemotherapeutic, AnACNPs showed the most favorable antiglioma effect both in vitro and in vivo. In conclusion, a novel drug delivery system was developed for glioma dual targeting and glioma penetrating. The results demonstrated that the system effectively targeted gliomas and provided the most favorable antiglioma effect.


Assuntos
Neoplasias Encefálicas/tratamento farmacológico , Peptídeos Penetradores de Células/química , Glioma/tratamento farmacológico , Nanopartículas/química , Nanotecnologia/métodos , Peptídeos/química , Animais , Apoptose , Barreira Hematoencefálica , Linhagem Celular Tumoral , Proliferação de Células , Sistemas de Liberação de Medicamentos , Inibidores Enzimáticos/química , Células Endoteliais da Veia Umbilical Humana/citologia , Humanos , Concentração Inibidora 50 , Ligantes , Metaloproteinase 2 da Matriz/metabolismo , Camundongos , Camundongos Endogâmicos BALB C
11.
Asian J Pharm Sci ; 19(1): 100883, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38357524

RESUMO

Nanoscale drug delivery systems (nDDS) have been employed widely in enhancing the therapeutic efficacy of drugs against diseases with reduced side effects. Although several nDDS have been successfully approved for clinical use up to now, biological barriers between the administration site and the target site hinder the wider clinical adoption of nDDS in disease treatment. Polyethylene glycol (PEG)-modification (or PEGylation) has been regarded as the gold standard for stabilising nDDS in complex biological environment. However, the accelerated blood clearance (ABC) of PEGylated nDDS after repeated injections becomes great challenges for their clinical applications. Zwitterionic polymer, a novel family of anti-fouling materials, have evolved as an alternative to PEG due to their super-hydrophilicity and biocompatibility. Zwitterionic nDDS could avoid the generation of ABC phenomenon and exhibit longer blood circulation time than the PEGylated analogues. More impressively, zwitterionic nDDS have recently been shown to overcome multiple biological barriers such as nonspecific organ distribution, pressure gradients, impermeable cell membranes and lysosomal degradation without the need of any complex chemical modifications. The realization of overcoming multiple biological barriers by zwitterionic nDDS may simplify the current overly complex design of nDDS, which could facilitate their better clinical translation. Herein, we summarise the recent progress of zwitterionic nDDS at overcoming various biological barriers and analyse their underlying mechanisms. Finally, prospects and challenges are introduced to guide the rational design of zwitterionic nDDS for disease treatment.

12.
Int J Pharm ; 657: 124127, 2024 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38621611

RESUMO

Hemophagocytic lymphohistiocytosis (HLH) is a life-threatening clinical syndrome characterized by a positive feedback loop between cytokine storm and macrophages and lymphocytes overactivation, which could serve as a valid therapeutic target for HLH treatment. In this study, the clinically extensively used JAK1/2 inhibitor ruxolitinib was encapsulated into macrophage membrane-coated nanoparticles (M@NP-R) with high drug-loading efficiency for targeted HLH treatment. In vitro and in vivo studies demonstrated that M@NP-R not only efficiently adsorbed extracellular proinflammation cytokines, like IFN-γ and IL-6 to alleviate the cytokine storm, but also effectively dampened macrophage activation and proliferation by intracellular JAK/STAT signaling pathway inhibition. M@NP-R treatment significantly ameliorated the clinical and laboratory manifestations of HLH in mouse models, including trilineage cytopenia, hypercytokinemia, organomegaly, hepatorenal dysfunction, and tissue inflammation. Importantly, M@NP-R significantly enhanced the survival of the lethal HLH mice. Altogether, M@NP-R successfully blocked the positive feedback loop between the cytokine storm and macrophage overactivation by depleting extracellular inflammatory cytokines and inhibiting the intracellular JAK/STAT signaling pathway, both of which worked synergistically in HLH treatment. As ruxolitinib has already been extensively used in clinics with favorable safety, and M@NP is biodegradable and highly biocompatible, M@NP-R has good prospects for clinical translation.


Assuntos
Síndrome da Liberação de Citocina , Citocinas , Linfo-Histiocitose Hemofagocítica , Macrófagos , Nanopartículas , Nitrilas , Pirazóis , Pirimidinas , Animais , Linfo-Histiocitose Hemofagocítica/tratamento farmacológico , Pirazóis/administração & dosagem , Pirazóis/farmacologia , Pirimidinas/administração & dosagem , Pirimidinas/farmacologia , Camundongos , Citocinas/metabolismo , Síndrome da Liberação de Citocina/tratamento farmacológico , Macrófagos/efeitos dos fármacos , Ativação de Macrófagos/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Transdução de Sinais/efeitos dos fármacos , Células RAW 264.7 , Modelos Animais de Doenças , Masculino , Inibidores de Janus Quinases/farmacologia , Inibidores de Janus Quinases/administração & dosagem , Humanos
13.
Acta Biomater ; 174: 314-330, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38036284

RESUMO

Epilepsy refers to a disabling neurological disorder featured by the long-term and unpredictable occurrence of seizures owing to abnormal excessive neuronal electrical activity and is closely linked to unresolved inflammation, oxidative stress, and hypoxia. The difficulty of accurate localization and targeted drug delivery to the lesion hinders the effective treatment of this disease. The locally activated inflammatory cells in the epileptogenic region offer a new opportunity for drug delivery to the lesion. In this work, CD163-positive macrophages in the epileptogenic region were first harnessed as Trojan horses after being hijacked by targeted albumin manganese dioxide nanoparticles, which effectively penetrated the brain endothelial barrier and delivered multifunctional nanomedicines to the epileptic foci. Hence, accumulative nanoparticles empowered the visualization of the epileptogenic lesion through microenvironment-responsive MR T1-weight imaging of manganese dioxide. Besides, these manganese-based nanomaterials played a pivotal role in shielding neurons from cell apoptosis mediated by oxidative stress and hypoxia. Taken together, the present study provides an up-to-date approach for integrated diagnosis and treatment of epilepsy and other hypoxia-associated inflammatory diseases. STATEMENT OF SIGNIFICANCE: The therapeutic effects of antiepileptic drugs (AEDs) are hindered by insufficient drug accumulation in the epileptic site. Herein, we report an efficient strategy to use locally activated macrophages as carriers to deliver multifunctional nanoparticles to the brain lesion. As MR-responsive T1 contrast agents, multifunctional BMC nanoparticles can be harnessed to accurately localize the epileptogenic region with high sensitivity and specificity. Meanwhile, catalytic nanoparticles BMC can synergistically scavenge ROS, generate O2 and regulate neuroinflammation for the protection of neurons in the brain.


Assuntos
Epilepsia , Nanopartículas , Humanos , Nanomedicina Teranóstica , Epilepsia/tratamento farmacológico , Macrófagos , Hipóxia , Nanopartículas/uso terapêutico
14.
Adv Sci (Weinh) ; 11(5): e2303907, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37997186

RESUMO

Despite being a new promising tool for cancer therapy, intravenous delivery of oncolytic viruses (OVs) is greatly limited by poor tumor targeting, rapid clearance in the blood, severe organ toxicity, and cytokine release syndrome. Herein, a simple and efficient strategy of erythrocyte-leveraged oncolytic virotherapy (ELeOVt) is reported, which for the first time assembled OVs on the surface of erythrocytes with up to near 100% efficiency and allowed targeted delivery of OVs to the lung after intravenous injection to achieve excellent treatment of pulmonary metastases while greatly improving the biocompatibility of OVs as a drug. Polyethyleneimine (PEI) as a bridge to assemble OVs on erythrocytes also played an important role in promoting the transfection of OVs. It is found that ELeOVt approach significantly prolonged the circulation time of OVs and increased the OVs distribution in the lung by more than tenfold, thereby significantly improving the treatment of lung metastases while reducing organ and systemic toxicity. Taken together, these findings suggest that the ELeOVt provides a biocompatible, efficient, and widely available approach to empower OVs to combat lung metastasis.


Assuntos
Neoplasias Pulmonares , Terapia Viral Oncolítica , Vírus Oncolíticos , Humanos , Neoplasias Pulmonares/terapia , Eritrócitos
15.
Adv Sci (Weinh) ; 11(24): e2306388, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38477522

RESUMO

CD47-SIRPα axis is an immunotherapeutic target in tumor therapy. However, current monoclonal antibody targeting CD47-SIRPα axis is associated with on-target off-tumor and antigen sink effects, which significantly limit its potential clinical application. Herein, a biomimetic nano-degrader is developed to inhibit CD47-SIRPα axis in a site-specific manner through SIRPα degradation, and its efficacy in acute myocardial infarction (AMI) is evaluated. The nano-degrader is constructed by hybridizing liposome with red blood cell (RBC) membrane (RLP), which mimics the CD47 density of senescent RBCs and possesses a natural high-affinity binding capability to SIRPα on macrophages without signaling capacity. RLP would bind with SIRPα and induce its lysosomal degradation through receptor-mediated endocytosis. To enhance its tissue specificity, Ly6G antibody conjugation (aRLP) is applied, enabling its attachment to neutrophils and accumulation within inflammatory sites. In the myocardial infarction model, aRLP accumulated in the infarcted myocardium blocks CD47-SIRPα axis and subsequently promoted the efferocytosis of apoptotic cardiomyocytes by macrophage, improved heart repair. This nano-degrader efficiently degraded SIRPα in lysosomes, providing a new strategy for immunotherapy with great clinical transformation potential.


Assuntos
Antígeno CD47 , Macrófagos , Receptores Imunológicos , Antígeno CD47/imunologia , Antígeno CD47/metabolismo , Animais , Receptores Imunológicos/metabolismo , Camundongos , Macrófagos/imunologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Modelos Animais de Doenças , Infarto do Miocárdio/imunologia , Inibidores de Checkpoint Imunológico/farmacologia , Antígenos de Diferenciação/imunologia , Fagocitose/efeitos dos fármacos , Biomimética/métodos , Humanos , Eferocitose
16.
Adv Sci (Weinh) ; 11(15): e2305546, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38342612

RESUMO

The heterogeneity of triple-negative breast cancers (TNBC) remains challenging for various treatments. Ferroptosis, a recently identified form of cell death resulting from the unrestrained peroxidation of phospholipids, represents a potential vulnerability in TNBC. In this study, a high intensity focused ultrasound (HIFU)-driven nanomotor is developed for effective therapy of TNBC through induction of ferroptosis. Through bioinformatics analysis of typical ferroptosis-associated genes in the FUSCCTNBC dataset, gambogic acid is identified as a promising ferroptosis drug and loaded it into the nanomotor. It is found that the rapid motion of nanomotors propelled by HIFU significantly enhanced tumor accumulation and penetration. More importantly, HIFU not only actuated nanomotors to trigger effective ferroptosis of TNBC cells, but also drove nanomotors to activate ferroptosis-mediated antitumor immunity in primary and metastatic TNBC models, resulting in effective tumor regression and prevention of metastases. Overall, HIFU-driven nanomotors show great potential for ferroptosis-immunotherapy of TNBC.


Assuntos
Ferroptose , Neoplasias de Mama Triplo Negativas , Humanos , Neoplasias de Mama Triplo Negativas/terapia , Imunoterapia , Morte Celular , Biologia Computacional
17.
Adv Healthc Mater ; 13(16): e2303267, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38198534

RESUMO

Efferocytosis, mediated by the macrophage receptor MerTK (myeloid-epithelial-reproductive tyrosine kinase), is a significant contributor to cardiac repair after myocardial ischemia-reperfusion (MI/R) injury. However, the death of resident cardiac macrophages (main effector cells), inactivation of MerTK (main effector receptor), and overexpression of "do not eat me" signals (brake signals, such as CD47), collectively lead to the impediment of efferocytosis in the post-MI/R heart. To date, therapeutic strategies targeting individual above obstacles are relatively lacking, let alone their effectiveness being limited due to constraints from the other concurrent two. Herein, inspired by the application research of chimeric antigen receptor macrophages (CAR-Ms) in solid tumors, a genetically modified macrophage-based synergistic drug delivery strategy that effectively challenging the three major barriers in an integrated manner is developed. This strategy involves the overexpression of exogenous macrophages with CCR2 (C-C chemokine receptor type 2) and cleavage-resistant MerTK, as well as surface clicking with liposomal PEP-20 (a CD47 antagonist). In MI/R mice model, this synergistic strategy can effectively restore cardiac efferocytosis after intravenous injection, thereby alleviating the inflammatory response, ultimately preserving cardiac function. This therapy focuses on inhibiting the initiation and promoting active resolution of inflammation, providing new insights for immune-regulatory therapy.


Assuntos
Antígeno CD47 , Macrófagos , Traumatismo por Reperfusão Miocárdica , c-Mer Tirosina Quinase , Animais , Antígeno CD47/metabolismo , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Camundongos , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , c-Mer Tirosina Quinase/metabolismo , c-Mer Tirosina Quinase/genética , Camundongos Endogâmicos C57BL , Remodelação Ventricular/efeitos dos fármacos , Receptores CCR2/metabolismo , Engenharia Genética/métodos , Masculino , Lipossomos/química , Fagocitose/efeitos dos fármacos , Eferocitose
18.
Pharm Res ; 30(10): 2485-98, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23797465

RESUMO

Major central nervous system (CNS) disorders, including brain tumors, Alzheimer's disease, Parkinson's disease, and stroke, are significant threats to human health. Although impressive advances in the treatment of CNS disorders have been made during the past few decades, the success rates are still moderate if not poor. The blood­brain barrier (BBB) hampers the access of systemically administered drugs to the brain. The development of nanotechnology provides powerful tools to deliver therapeutics to target sites. Anchoring them with specific ligands can endow the nano-therapeutics with the appropriate properties to circumvent the BBB. In this review, the potential nanotechnology-based targeted drug delivery strategies for different CNS disorders are described. The limitations and future directions of brain-targeted delivery systems are also discussed.


Assuntos
Barreira Hematoencefálica/efeitos dos fármacos , Fármacos do Sistema Nervoso Central/administração & dosagem , Doenças do Sistema Nervoso Central/tratamento farmacológico , Portadores de Fármacos/química , Nanopartículas/química , Preparações Farmacêuticas/administração & dosagem , Animais , Barreira Hematoencefálica/metabolismo , Sistemas de Liberação de Medicamentos/métodos , Humanos , Fármacos Neuroprotetores/administração & dosagem , Fármacos Neuroprotetores/química , Fármacos Neuroprotetores/farmacocinética , Preparações Farmacêuticas/química
19.
Pharm Res ; 30(7): 1813-23, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23549751

RESUMO

PURPOSE: A phage-displayed peptide TGN was used as a targeting motif to help the delivery of NAP-loaded nanoparticles across the blood-brain barrier (BBB), which sets an obstacle for brain delivery of NAP in vivo. METHODS: Intracerebroventricular injection of Aß1₋40 into mice was used to construct in vivo model of Alzheimer's disease. The water maze task was performed to evaluate the effects of the NAP formulations on learning and memory deficits in mice. The neuroprotective effect was tested by detecting acetylcholinesterase (AChE) and choline acetyltransferase (ChAT) activity and conducting histological assays. RESULTS: Intravenous administration of NAP-loaded TGN modified nanoparticles (TGN-NP/NAP) has shown better improvement in spatial learning than NAP solution and NAP-loaded nanoparticles in Morris water maze experiment. The crossing number of the mice with memory deficits recovered after treatment with TGN-NP/NAP in a dose dependent manner. Similar results were also observed in AChE and ChAT activity. No morphological damage and no detectable Aß plaques were found in mice hippocampus and cortex treated with TGN-NP/NAP. CONCLUSIONS: TGN modified nanoparticles could be a promising drug delivery system for peptide and protein drug such as NAP to enter the brain and play the therapeutic role.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Nanopartículas/química , Fármacos Neuroprotetores/administração & dosagem , Fármacos Neuroprotetores/uso terapêutico , Oligopeptídeos/administração & dosagem , Oligopeptídeos/uso terapêutico , Polietilenoglicóis/química , Poliglactina 910/química , Acetilcolinesterase/metabolismo , Doença de Alzheimer/patologia , Animais , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/patologia , Encéfalo/efeitos dos fármacos , Encéfalo/patologia , Colina O-Acetiltransferase/metabolismo , Sistemas de Liberação de Medicamentos , Masculino , Transtornos da Memória/tratamento farmacológico , Camundongos , Nanopartículas/ultraestrutura , Fármacos Neuroprotetores/química , Oligopeptídeos/química
20.
Biomaterials ; 303: 122395, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37988899

RESUMO

Triple-negative breast cancer (TNBC) causes great suffering to patients because of its heterogeneity, poor prognosis, and chemotherapy resistance. Ferroptosis is characterized by iron-dependent oxidative damage by accumulating intracellular lipid peroxides to lethal levels, and plays a vital role in the treatment of TNBC based on its intrinsic characteristics. To identify the relationship between chemotherapy resistance and ferroptosis in TNBC, we analyzed the single cell RNA-sequencing public dataset of GSE205551. It was found that the expression of Gpx4 in DOX-resistant TNBC cells was significantly higher than that in DOX-sensitive TNBC cells. Based on this finding, we hypothesize that inducing ferroptosis by inhibiting the expression of Gpx4 can reduce the resistance of TNBC to DOX and enhance the therapeutic effect of chemotherapy on TNBC. Herein, dihydroartemisinin (DHA)-loaded polyglutamic acid-stabilized Fe3O4 magnetic nanoparticles (Fe3O4-PGA-DHA) was combined with DOX-loaded polyaspartic acid-stabilized Fe3O4 magnetic nanoparticles (Fe3O4-PASP-DOX) for ferroptosis-enhanced chemotherapy of TNBC. Compared with Fe3O4-PASP-DOX, Fe3O4-PGA-DHA + Fe3O4-PASP-DOX demonstrated significantly stronger cytotoxicity against different TNBC cell lines and achieved significantly more intracellular accumulation of reactive oxygen species and lipid peroxides. Furthermore, transcriptomic analyses demonstrated that Fe3O4-PASP-DOX-induced apoptosis could be enhanced by Fe3O4-PGA-DHA-induced ferroptosis and Fe3O4-PGA-DHA + Fe3O4-PASP-DOX might trigger ferroptosis in MDA-MB-231 cells by inhibiting the PI3K/AKT/mTOR/GPX4 pathway. Fe3O4-PGA-DHA + Fe3O4-PASP-DOX showed superior anti-tumor efficacy on MDA-MB-231 tumor-bearing mice, providing great potential for improving the therapeutic effect of TNBC.


Assuntos
Ferroptose , Nanopartículas , Neoplasias de Mama Triplo Negativas , Humanos , Camundongos , Animais , Neoplasias de Mama Triplo Negativas/patologia , Linhagem Celular Tumoral , Peróxidos Lipídicos/uso terapêutico , Fosfatidilinositol 3-Quinases , Fenômenos Magnéticos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA