RESUMO
Upon recognition of microbes, pattern recognition receptors (PRRs) activate pattern-triggered immunity. FLAGELLIN SENSING2 (FLS2) and BRASSINOSTEROID INSENSITIVE1-ASSOCIATED KINASE1 (BAK1) form a typical PRR complex that senses bacteria. Here, we report that the kinase activity of the malectin-like receptor-like kinase STRESS INDUCED FACTOR 2 (SIF2) is critical for Arabidopsis (Arabidopsis thaliana) resistance to bacteria by regulating stomatal immunity. SIF2 physically associates with the FLS2-BAK1 PRR complex and interacts with and phosphorylates the guard cell SLOW ANION CHANNEL1 (SLAC1), which is necessary for abscisic acid (ABA)-mediated stomatal closure. SIF2 is also required for the activation of ABA-induced S-type anion currents in Arabidopsis protoplasts, and SIF2 is sufficient to activate SLAC1 anion channels in Xenopus oocytes. SIF2-mediated activation of SLAC1 depends on specific phosphorylation of Ser 65. This work reveals that SIF2 functions between the FLS2-BAK1 initial immunity receptor complex and the final actuator SLAC1 in stomatal immunity.
Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Histona Desacetilases/metabolismo , Proteínas de Membrana/metabolismo , Estômatos de Plantas/imunologia , Proteínas Repressoras/metabolismo , Ácido Abscísico/metabolismo , Ácido Abscísico/farmacologia , Animais , Arabidopsis/microbiologia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/imunologia , Resistência à Doença/fisiologia , Feminino , Histona Desacetilases/genética , Histona Desacetilases/imunologia , Proteínas de Membrana/genética , Proteínas de Membrana/imunologia , Mutação , Oócitos/fisiologia , Fosforilação , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Imunidade Vegetal/efeitos dos fármacos , Estômatos de Plantas/metabolismo , Plantas Geneticamente Modificadas , Proteínas Quinases/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/imunologia , Serina/metabolismo , XenopusRESUMO
Plasma membrane-localized pattern recognition receptors (PRRs) such as FLAGELLIN SENSING2 (FLS2), EF-TU RECEPTOR (EFR), and CHITIN ELICITOR RECEPTOR KINASE1 (CERK1) recognize microbe-associated molecular patterns (MAMPs) to activate pattern-triggered immunity (PTI). A reverse genetics approach on genes responsive to the priming agent ß-aminobutyric acid (BABA) revealed IMPAIRED OOMYCETE SUSCEPTIBILITY1 (IOS1) as a critical PTI player. Arabidopsis thaliana ios1 mutants were hypersusceptible to Pseudomonas syringae bacteria. Accordingly, ios1 mutants showed defective PTI responses, notably delayed upregulation of the PTI marker gene FLG22-INDUCED RECEPTOR-LIKE KINASE1, reduced callose deposition, and mitogen-activated protein kinase activation upon MAMP treatment. Moreover, Arabidopsis lines overexpressing IOS1 were more resistant to bacteria and showed a primed PTI response. In vitro pull-down, bimolecular fluorescence complementation, coimmunoprecipitation, and mass spectrometry analyses supported the existence of complexes between the membrane-localized IOS1 and BRASSINOSTEROID INSENSITIVE1-ASSOCIATED KINASE1 (BAK1)-dependent PRRs FLS2 and EFR, as well as with the BAK1-independent PRR CERK1. IOS1 also associated with BAK1 in a ligand-independent manner and positively regulated FLS2-BAK1 complex formation upon MAMP treatment. In addition, IOS1 was critical for chitin-mediated PTI. Finally, ios1 mutants were defective in BABA-induced resistance and priming. This work reveals IOS1 as a novel regulatory protein of FLS2-, EFR-, and CERK1-mediated signaling pathways that primes PTI activation.
Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Aminobutiratos/metabolismo , Arabidopsis/genética , Arabidopsis/microbiologia , Proteínas de Arabidopsis/genética , Proteínas Quinases Ativadas por Mitógeno/genética , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Imunidade Vegetal/genética , Imunidade Vegetal/fisiologia , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Pseudomonas syringae/patogenicidadeRESUMO
Plasma membrane-localized pattern recognition receptors such as FLAGELLIN SENSING2 (FLS2) and EF-TU RECEPTOR (EFR) recognize microbe-associated molecular patterns (MAMPs) to activate the first layer of plant immunity termed pattern-triggered immunity (PTI). A reverse genetics approach with genes responsive to the priming agent ß-aminobutyric acid (BABA) revealed IMPAIRED OOMYCETE SUSCEPTIBILITY1 (IOS1) as a critical PTI player. Arabidopsis thaliana ios1 mutants were hypersusceptible to Pseudomonas syringae bacteria. Accordingly, ios1 mutants demonstrated defective PTI responses, notably delayed upregulation of PTI marker genes, lower callose deposition, and mitogen-activated protein kinase activities upon bacterial infection or MAMP treatment. Moreover, Arabidopsis lines overexpressing IOS1 were more resistant to P. syringae and demonstrated a primed PTI response. In vitro pull-down, bimolecular fluorescence complementation, coimmunoprecipitation, and mass spectrometry analyses supported the existence of complexes between the membrane-localized IOS1 and FLS2 and EFR. IOS1 also associated with BRASSINOSTEROID INSENSITIVE1-ASSOCIATED KINASE1 (BAK1) in a ligand-independent manner and positively regulated FLS2/BAK1 complex formation upon MAMP treatment. Finally, ios1 mutants were defective in BABA-induced resistance and priming. This work reveals IOS1 as a regulatory protein of FLS2- and EFR-mediated signaling that primes PTI activation upon bacterial elicitation.
Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Regulação da Expressão Gênica de Plantas , Doenças das Plantas/imunologia , Imunidade Vegetal , Proteínas Quinases/metabolismo , Transdução de Sinais , Aminobutiratos/metabolismo , Arabidopsis/genética , Arabidopsis/imunologia , Proteínas de Arabidopsis/genética , Expressão Gênica , Leucina/metabolismo , Mutação , Doenças das Plantas/microbiologia , Proteínas Quinases/genética , Pseudomonas syringae/fisiologia , Receptores de Reconhecimento de Padrão/genética , Receptores de Reconhecimento de Padrão/metabolismoRESUMO
BACKGROUND: TIFY is a large plant-specific transcription factor gene family. A subgroup of TIFY genes named JAZ (Jasmonate-ZIM domain) has been identified as repressors of jasmonate (JA)-regulated transcription in Arabidopsis and other plants. JA signaling is involved in many aspects of plant growth/development and in defense responses to biotic and abiotic stresses. Here, we identified the TIFY genes (designated PvTIFY) from the legume common bean (Phaseolus vulgaris) and functionally characterized PvTIFY10C as a transcriptional regulator. RESULTS: Nineteen genes from the PvTIFY gene family were identified through whole-genome sequence analysis. Most of these were induced upon methyl-JA elicitation. We selected PvTIFY10C as a representative JA-responsive PvTIFY gene for further functional analysis. Transcriptome analysis via microarray hybridization using the newly designed Bean Custom Array 90 K was performed on transgenic roots of composite plants with modulated (RNAi-silencing or over-expression) PvTIFY10C gene expression. Data were interpreted using Gene Ontology and MapMan adapted to common bean. Microarray differential gene expression data were validated by real-time qRT-PCR expression analysis. Comparative global gene expression analysis revealed opposite regulatory changes in processes such as RNA and protein regulation, stress responses and metabolism in PvTIFY10C silenced vs. over-expressing roots. These data point to transcript reprogramming (mainly repression) orchestrated by PvTIFY10C. In addition, we found that several PvTIFY genes, as well as genes from the JA biosynthetic pathway, responded to P-deficiency. Relevant P-responsive genes that participate in carbon metabolic pathways, cell wall synthesis, lipid metabolism, transport, DNA, RNA and protein regulation, and signaling were oppositely-regulated in control vs. PvTIFY10C-silenced roots of composite plants under P-stress. These data indicate that PvTIFY10C regulates, directly or indirectly, the expression of some P-responsive genes; this process could be mediated by JA-signaling. CONCLUSION: Our work contributes to the functional characterization of PvTIFY transcriptional regulators in common bean, an agronomically important legume. Members from the large PvTIFY gene family are important global transcriptional regulators that could participate as repressors in the JA signaling pathway. In addition, we propose that the JA-signaling pathway involving PvTIFY genes might play a role in regulating the plant response/adaptation to P-starvation.
Assuntos
Ciclopentanos/metabolismo , Oxilipinas/metabolismo , Phaseolus/metabolismo , Fósforo/deficiência , Fatores de Transcrição/metabolismo , Regulação da Expressão Gênica de Plantas , Fósforo/metabolismo , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Fatores de Transcrição/genéticaRESUMO
In common bean (Phaseolus vulgaris L.), the most abundant seed proteins are the storage protein phaseolin and the family of closely related APA proteins (arcelin, phytohemagglutinin and α-amylase inhibitor). High variation in APA protein composition has been described and the presence of arcelin (Arc) has been associated with bean resistance against two bruchid beetles, the bean weevil (Acanthoscelides obtectus Say) and the Mexican bean weevil (Zabrotes subfasciatus Bohemian). So far, seven Arc variants have been identified, all in wild accessions, however, only those containing Arc-4 were reported to be resistant to both species. Although many efforts have been made, a successful breeding of this genetic trait into cultivated genotypes has not yet been achieved. Here, we describe a newly collected wild accession (named QUES) and demonstrate its resistance to both A. obtectus and Z. subfasciatus. Immunological and proteomic analyses of QUES seed protein composition indicated the presence of new Arc and arcelin-like (ARL) polypeptides of about 30 and 27 kDa, respectively. Sequencing of cDNAs coding for QUES APA proteins confirmed that this accession contains new APA variants, here referred to as Arc-8 and ARL-8. Moreover, bioinformatic analysis showed the two proteins are closely related to APA components present in the G12949 wild bean accession, which contains the Arc-4 variant. The presence of these new APA components, combined with the observations that they are poorly digested and remain very abundant in A. obtectus feces, so-called frass, suggest that the QUES APA locus is involved in the bruchid resistance. Moreover, molecular analysis indicated a lower complexity of the locus compared to that of G12949, suggesting that QUES should be considered a valuable source of resistance for further breeding purposes.
Assuntos
Alelos , Genótipo , Phaseolus/genética , Lectinas de Plantas/genética , Gorgulhos , Animais , Cruzamento , Biologia Computacional , DNA Complementar/genética , DNA Complementar/isolamento & purificação , Eletroforese em Gel de Poliacrilamida , Loci Gênicos , Fito-Hemaglutininas/genética , Fito-Hemaglutininas/metabolismo , Lectinas de Plantas/metabolismo , Proteômica , Análise de Sequência de DNARESUMO
Several environmental stresses generate high amounts of reactive oxygen species (ROS) in plant cells, resulting in oxidative stress. Symbiotic nitrogen fixation (SNF) in the legume-rhizobia symbiosis is sensitive to damage from oxidative stress. Active nodules of the common bean (Phaseolus vulgaris) exposed to the herbicide paraquat (1,1'-dimethyl-4,4'-bipyridinium dichloride hydrate), which stimulates ROS accumulation, exhibited reduced nitrogenase activity and ureide content. We analyzed the global gene response of nodules subjected to oxidative stress using the Bean Custom Array 90K, which includes probes from 30,000 expressed sequence tags (ESTs). A total of 4280 ESTs were differentially expressed in stressed bean nodules; of these, 2218 were repressed. Based on Gene Ontology analysis, these genes were grouped into 42 different biological process categories. Analysis with the PathExpress bioinformatic tool, adapted for bean, identified five significantly repressed metabolic pathways related to carbon/nitrogen metabolism, which is crucial for nodule function. Quantitative reverse transcription (qRT)-PCR analysis of transcription factor (TF) gene expression showed that 67 TF genes were differentially expressed in nodules exposed to oxidative stress. Putative cis-elements recognized by highly responsive TF were detected in promoter regions of oxidative stress regulated genes. The expression of oxidative stress responsive genes and of genes important for SNF in bacteroids analyzed in stressed nodules revealed that these conditions elicited a transcriptional response.
Assuntos
Regulação da Expressão Gênica de Plantas , Estresse Oxidativo , Phaseolus/genética , Nódulos Radiculares de Plantas/genética , Fatores de Transcrição/genética , Perfilação da Expressão Gênica , Análise de Sequência com Séries de Oligonucleotídeos , Estresse Oxidativo/genética , Paraquat , Phaseolus/metabolismo , Fenótipo , Proteínas de Plantas/genética , Proteínas de Plantas/fisiologia , Regiões Promotoras Genéticas , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Rhizobium tropici/genética , Rhizobium tropici/metabolismo , Nódulos Radiculares de Plantas/metabolismo , SimbioseRESUMO
⢠We previously identified the lpa1 (low phytic acid) 280-10 line that carries a mutation conferring a 90% reduction in phytic acid (InsP(6) ) content. In contrast to other lpa mutants, lpa1(280-10) does not display negative pleiotropic effects. In the present paper, we have identified the mutated gene and analysed its impact on the phytic acid pathway. ⢠Here, we mapped the lpa1(280-10) mutation by bulk analysis on a segregating F(2) population, an then, by comparison with the soybean genome, we identified and sequenced a candidate gene. The InsP(6) pathway was analysed by gene expression and quantification of metabolites. ⢠The mutated Pvmrp1(280-10) cosegregates with the lpa1(280-10) mutation, and the expression level of several genes of the InsP(6) pathway are reduced in the lpa1(280-10) mutant as well as the inositol and raffinosaccharide content. PvMrp2, a very similar paralogue of PvMrp1 was also mapped and sequenced. ⢠The lpa1 mutation in beans is likely the result of a defective Mrp1 gene (orthologous to the lpa genes AtMRP5 and ZmMRP4), while its Mrp2 paralog is not able to complement the mutant phenotype in the seed. This mutation appears to down-regulate the InsP(6) pathway at the transcriptional level, as well as altering inositol-related metabolism and affecting ABA sensitivity.
Assuntos
Transportadores de Cassetes de Ligação de ATP/genética , Ácido Abscísico/farmacologia , Inositol/metabolismo , Phaseolus/genética , Proteínas de Plantas/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Transportadores de Cassetes de Ligação de ATP/fisiologia , Sequência de Aminoácidos , Mapeamento Cromossômico , Germinação/efeitos dos fármacos , Germinação/genética , Dados de Sequência Molecular , Mutação , Phaseolus/efeitos dos fármacos , Phaseolus/metabolismo , Ácido Fítico/biossíntese , Proteínas de Plantas/metabolismo , Proteínas de Plantas/fisiologia , Sementes/efeitos dos fármacos , Sementes/metabolismo , Alinhamento de Sequência , Transdução de SinaisRESUMO
The lpa1 mutations in maize are caused by lesions in the ZmMRP4 (multidrug resistance-associated proteins 4) gene. In previous studies (Raboy et al. in Plant Physiol 124:355-368, 2000; Pilu et al. in Theor Appl Genet 107:980-987, 2003a; Shi et al. Nat Biotechnol 25:930-937, 2007), several mutations have been isolated in this locus causing a reduction of phytic acid (myo-inositol-1,2,3,4,5,6-hexakisphosphate, or InsP(6)) content and an equivalent increasing of free phosphate. In particular, the lpa1-241 mutation causes a reduction of up to 90% of phytic acid, associated with strong pleiotropic effects on the whole plant. In this work, we show, for the first time to our knowledge, an interaction between the accumulation of anthocyanin pigments in the kernel and the lpa mutations. In fact the lpa1-241 mutant accumulates a higher level of anthocyanins as compared to wild type either in the embryo (about 3.8-fold) or in the aleurone layer (about 0.3-fold) in a genotype able to accumulate anthocyanin. Furthermore, we demonstrate that these pigments are mislocalised in the cytoplasm, conferring a blue pigmentation of the scutellum, because of the neutral/basic pH of this cellular compartment. As a matter of fact, the propionate treatment, causing a specific acidification of the cytoplasm, restored the red pigmentation of the scutellum in the mutant and expression analysis showed a reduction of ZmMRP3 anthocyanins' transporter gene expression. On the whole, these data strongly suggest a possible interaction between the lpa mutation and anthocyanin accumulation and compartmentalisation in the kernel.