Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Am J Physiol Cell Physiol ; 304(4): C324-33, 2013 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-23195071

RESUMO

Cardiotonic steroids (CTS) of the strophanthus and digitalis families have opposing effects on long-term blood pressure (BP). This implies hitherto unrecognized divergent signaling pathways for these CTS. Prolonged ouabain treatment upregulates Ca(2+) entry via Na(+)/Ca(2+) exchanger-1 (NCX1) and TRPC6 gene-encoded receptor-operated channels in mesenteric artery smooth muscle cells (ASMCs) in vivo and in vitro. Here, we test the effects of digoxin on Ca(2+) entry and signaling in ASMC. In contrast to ouabain treatment, the in vivo administration of digoxin (30 µg·kg(-1)·day(-1) for 3 wk) did not raise BP and had no effect on resting cytolic free Ca(2+) concentration ([Ca(2+)](cyt)) or phenylephrine-induced Ca(2+) signals in isolated ASMCs. Expression of transporters in the α2 Na(+) pump-NCX1-TRPC6 Ca(2+) signaling pathway was not altered in arteries from digoxin-treated rats. Upregulated α2 Na(+) pumps and a phosphorylated form of the c-SRC protein kinase (pY419-Src, ~4.5-fold) were observed in ASMCs from rats treated with ouabain but not digoxin. Moreover, in primary cultured ASMCs from normal rats, treatment with digoxin (100 nM, 72 h) did not upregulate NCX1 and TRPC6 but blocked the ouabain-induced upregulation of these transporters. Pretreatment of ASMCs with the c-Src inhibitor PP2 (1 µM; 4-amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo[3,4-d]pyrimidine) but not its inactive analog eliminated the effect of ouabain on NCX1 and TRPC6 expression and ATP-induced Ca(2+) entry. Thus, in contrast to ouabain, the interaction of digoxin with α2 Na(+) pumps is unable to activate c-Src phosphorylation and upregulate the downstream NCX1-TRPC6 Ca(2+) signaling pathway in ASMCs. The inability of digoxin to upregulate c-Src may underlie its inability to raise long-term BP.


Assuntos
Sinalização do Cálcio/efeitos dos fármacos , Cardiotônicos/farmacologia , Digoxina/farmacologia , Músculo Liso Vascular/citologia , Miócitos de Músculo Liso/metabolismo , Ouabaína/farmacologia , Quinases da Família src/metabolismo , Animais , Aorta/citologia , Canais de Cálcio/metabolismo , Cardiotônicos/administração & dosagem , Células Cultivadas , Digoxina/administração & dosagem , Ativação Enzimática , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Masculino , Artérias Mesentéricas/citologia , Miócitos de Músculo Liso/efeitos dos fármacos , Nifedipino/farmacologia , Ouabaína/administração & dosagem , Fosforilação , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Pirimidinas/farmacologia , Ratos , Ratos Sprague-Dawley , Trocador de Sódio e Cálcio/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismo , Canais de Cátion TRPC/metabolismo , Quinases da Família src/antagonistas & inibidores
2.
Am J Physiol Heart Circ Physiol ; 298(1): H263-74, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19897708

RESUMO

Prolonged ouabain administration (25 microg kg(-1) day(-1) for 5 wk) induces "ouabain hypertension" (OH) in rats, but the molecular mechanisms by which ouabain elevates blood pressure are unknown. Here, we compared Ca(2+) signaling in mesenteric artery smooth muscle cells (ASMCs) from normotensive (NT) and OH rats. Resting cytosolic free Ca(2+) concentration ([Ca(2+)](cyt); measured with fura-2) and phenylephrine-induced Ca(2+) transients were augmented in freshly dissociated OH ASMCs. Immunoblots revealed that the expression of the ouabain-sensitive alpha(2)-subunit of Na(+) pumps, but not the predominant, ouabain-resistant alpha(1)-subunit, was increased (2.5-fold vs. NT ASMCs) as was Na(+)/Ca(2+) exchanger-1 (NCX1; 6-fold vs. NT) in OH arteries. Ca(2+) entry, activated by sarcoplasmic reticulum (SR) Ca(2+) store depletion with cyclopiazonic acid (SR Ca(2+)-ATPase inhibitor) or caffeine, was augmented in OH ASMCs. This reflected an augmented expression of 2.5-fold in OH ASMCs of C-type transient receptor potential TRPC1, an essential component of store-operated channels (SOCs); two other components of some SOCs were not expressed (TRPC4) or were not upregulated (TRPC5). Ba(2+) entry activated by the diacylglycerol analog 1-oleoyl-2-acetyl-sn-glycerol [a measure of receptor-operated channel (ROC) activity] was much greater in OH than NT ASMCs. This correlated with a sixfold upregulation of TRPC6 protein, a ROC family member. Importantly, in primary cultured mesenteric ASMCs from normal rats, 72-h treatment with 100 nM ouabain significantly augmented NCX1 and TRPC6 protein expression and increased resting [Ca(2+)](cyt) and ROC activity. SOC activity was also increased. Silencer RNA knockdown of NCX1 markedly downregulated TRPC6 and eliminated the ouabain-induced augmentation; silencer RNA knockdown of TRPC6 did not affect NCX1 expression but greatly attenuated its upregulation by ouabain. Clearly, NCX1 and TRPC6 expression are interrelated. Thus, prolonged ouabain treatment upregulates the Na(+) pump alpha(2)-subunit-NCX1-TRPC6 (ROC) Ca(2+) signaling pathway in arterial myocytes in vitro as well as in vivo. This may explain the augmented myogenic responses and enhanced phenylephrine-induced vasoconstriction in OH arteries (83) as well as the high blood pressure in OH rats.


Assuntos
Cardiotônicos , Hipertensão/induzido quimicamente , Hipertensão/metabolismo , Músculo Liso Vascular/metabolismo , Ouabaína , Trocador de Sódio e Cálcio/biossíntese , ATPase Trocadora de Sódio-Potássio/biossíntese , Animais , Western Blotting , Canais de Cálcio/metabolismo , Corantes Fluorescentes , Fura-2 , Homeostase/fisiologia , Processamento de Imagem Assistida por Computador , Masculino , Artérias Mesentéricas/metabolismo , Artérias Mesentéricas/fisiologia , RNA Interferente Pequeno , Ratos , Ratos Sprague-Dawley , Retículo Sarcoplasmático/efeitos dos fármacos , Retículo Sarcoplasmático/metabolismo , Trocador de Sódio e Cálcio/metabolismo , Canais de Cátion TRPC/biossíntese , Canais de Cátion TRPC/genética , Canal de Cátion TRPC6 , Regulação para Cima
3.
Hepatology ; 48(6): 1913-23, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19003918

RESUMO

Decreased cardiac contractility and beta-adrenergic responsiveness have been observed in cirrhotic cardiomyopathy, but their molecular mechanisms remain unclear. To study beta-adrenergic-stimulated contractility and beta-adrenergic gene expression patterns, 20 Wistar Kyoto rats were treated with carbon tetrachloride to induce cirrhosis and 20 rats were used as controls. Left ventricular contractility was recorded in electrically driven isolated hearts perfused at constant flow with isoproterenol (10(-10) to 10(-6) M). A cardiac gene expression profile was obtained using a microarray for the myocyte adrenergic pathway. The cardiac contractility maximal response to isoproterenol was significantly reduced in cirrhotic rats in comparison to control rats, whereas the half-maximal effective concentration was not different. In cirrhotic rats, cardiac gene expression analysis showed a significant overexpression of G protein alpha-inhibiting subunit 2 (Galpha(i2)), cyclic nucleotide phosphodiesterase (PDE2a), regulator of G-protein signaling 2 (RGS2), and down-expression of adenylate cyclase (Adcy3). These results indicate that overexpression of Galpha(i2), PDE2a, and RGS2 down-regulates the beta-adrenergic signaling pathway, thus contributing to the pathogenesis of cirrhotic cardiomyopathy.


Assuntos
Cardiomiopatias/genética , Regulação da Expressão Gênica/fisiologia , Cirrose Hepática/complicações , Receptores Adrenérgicos beta/genética , Adenilil Ciclases/genética , Adenilil Ciclases/metabolismo , Agonistas Adrenérgicos beta/farmacologia , Animais , Tetracloreto de Carbono , Cardiomiopatias/metabolismo , Nucleotídeo Cíclico Fosfodiesterase do Tipo 2/genética , Nucleotídeo Cíclico Fosfodiesterase do Tipo 2/metabolismo , Relação Dose-Resposta a Droga , Subunidade alfa Gi2 de Proteína de Ligação ao GTP/genética , Subunidade alfa Gi2 de Proteína de Ligação ao GTP/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Frequência Cardíaca/efeitos dos fármacos , Isoproterenol/farmacologia , Cirrose Hepática/induzido quimicamente , Cirrose Hepática/metabolismo , Masculino , Contração Miocárdica/efeitos dos fármacos , Proteínas RGS/genética , Proteínas RGS/metabolismo , Ratos , Ratos Endogâmicos WKY , Receptores Adrenérgicos beta/metabolismo , Transdução de Sinais
4.
J Hypertens ; 26(5): 938-45, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18398336

RESUMO

OBJECTIVE: Regulator of G-protein signaling (RGS)-2 is a regulator of angiotensin II (Ang II) signaling. In Bartter's syndrome/Gitelman's syndrome (BS/GS), we have demonstrated increased RGS-2 levels and blunted Ang II signaling which contribute to their reduced vasomotor tone and remodeling. The present study investigates the effect of silencing RGS-2 in fibroblasts from six BS/GS patients on intracellular Ca2+ (CaI2+) mobilization and extracellular signal-regulated kinase (ERK) 1/2 phosphorylation, established Ang II-mediated responses. METHODS: Fibroblasts were RGS-2 silenced by transfecting chemically synthesized small interfering RNA. Silencing efficiency and Ang II-induced ERK 1/2 phosphorylation were evaluated by western blot and Ang II-induced Cai2+ using Fura-2 AM. RESULTS: RGS-2 expression in not silenced BS/GS fibroblasts from patients is increased compared with healthy controls [0.34 +/- 0.02 vs. 0.19 +/- 0.01 densitometric units (d.u.), P = 0.0005]. Silencing RGS-2 in BS/GS patients was achieved to the level of controls. Ang II-induced Cai2+ release and ERK 1/2 phosphorylation were reduced in not silenced cells from BG/GS patients compared with controls (112.16 +/- 13.2 vs. 130.33 +/- 13.64 mmol/l, P = 0.011 and 0.64 +/- 0.08 vs. 0.91 +/- 0.03 mmol/l, P < 0.006, respectively). Silencing RGS-2 in BS/GS patients increased Ang II-induced Cai2+ release and ERK 1/2 phosphorylation in silenced cells compared with not silenced cells [59.3 +/- 10.8 (peak-basal) vs. 40.5 +/- 14.1 nmol/l, P = 0.017 and 0.84 +/- 0.06 vs. 0.64 +/- 0.08 nmol/l, P < 0.03, respectively], whereas they were not different compared with controls (60.1 +/- 4.3 and 0.91 +/- 0.03 nmol/l). Integrating the Cai2+ response over time showed increased Cai2+ area under the curve (AUC) of BS/GS silenced cells compared with that of not silenced cells (P = 0.013). CONCLUSION: This is the first report of silencing RGS-2 effect on Ang II signaling in a human clinical condition of altered vascular tone regulation and remodeling and establishes RGS-2 as a key regulatory element of Ang II signaling in humans.


Assuntos
Angiotensina II/fisiologia , Síndrome de Bartter/fisiopatologia , Síndrome de Gitelman/fisiopatologia , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Proteínas RGS/metabolismo , Adulto , Cálcio/metabolismo , Células Cultivadas , Estudos de Coortes , Feminino , Fibroblastos/fisiologia , Inativação Gênica , Humanos , Masculino , Pessoa de Meia-Idade , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Fosforilação , Transdução de Sinais
5.
J Nutr ; 138(9): 1596-601, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18716156

RESUMO

We previously documented a clear-cut antihypertensive effect of green teat extract (GTE), which was associated with correction of endothelial dysfunction and prevention of left ventricular hypertrophy in an angiotensin II (Ang II)-dependent model of hypertension, but the molecular mechanisms remain to be defined. As several effects of Ang II involve production of reactive oxygen species (ROS) and activation of 2nd messengers, such as mitogen-activated protein kinase (MAPK) and Akt, we investigated the effect of GTE on these signal transduction pathways in Ang II-treated rats. Rats were treated for 2 wk with Ang II infusion (700 mug.kg(-1).d(-1); n = 6, via osmotic minipumps), Ang II plus GTE (6 g/L) dissolved in the drinking water; n = 6), or vehicle (n = 6) to serve as controls. Blood pressure was monitored by telemetry throughout the study. The activation and expression of NAD(P)H oxidase subunits, protein kinase C isoforms, Src, epidermal growth factor receptor (EGFR), Akt, and MAPK were determined in the heart in vitro through immunoprecipitation and western blot analysis with specific antibodies. NAD(P)H oxidase enzymatic activity was measured by cytochrome c reduction assay. GTE blunted Ang II-induced blood pressure increase and cardiac hypertrophy. In Ang II-treated rats, GTE decreased the expression of the NAD(P)H oxidase subunit gp91(phox) and the translocation of Rac-1, as well as NAD(P)H oxidase enzymatic activity. Furthermore, it specifically reduced Ang II-induced Src, EGFR, and Akt phosphorylation. These results show that GTE blunts Ang II-induced cardiac hypertrophy specifically by regulating ROS production and the Src/EGFR/Akt signaling pathway activated by Ang II.


Assuntos
Cardiomegalia/tratamento farmacológico , Receptores ErbB/metabolismo , Proteína Oncogênica v-akt/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Chá , Quinases da Família src/metabolismo , Angiotensina II/toxicidade , Animais , Cardiomegalia/induzido quimicamente , Cardiomegalia/metabolismo , Ativação Enzimática , Isoenzimas , Masculino , Proteínas Quinases Ativadas por Mitógeno/genética , Proteínas Quinases Ativadas por Mitógeno/metabolismo , NADPH Oxidases/metabolismo , Proteína Oncogênica v-akt/genética , Proteína Quinase C/química , Proteína Quinase C/genética , Proteína Quinase C/metabolismo , Subunidades Proteicas , Ratos , Ratos Sprague-Dawley , Transdução de Sinais
6.
Metabolism ; 57(3): 421-7, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18249218

RESUMO

RGS2 is a negative regulator of Galpha protein signaling and promotes adipocyte differentiation. Recently, we described a polymorphism at the C1114G locus with the G allele associated with hypertension in a cross-sectional study. The aim of the present study was to assess whether the RGS2 C1114G is predictive of overweight in young subjects with grade I hypertension. We genotyped at the RGS2 C1114G locus 406 (male, n = 294; female, n = 112) white hypertensive subjects (age, 33 +/- 9 years) never treated for hypertension and at low cardiovascular risk. Median follow-up was 7.85 years. At baseline, male patients carrying the RGS2 1114G allele had higher body mass index (BMI) than patients with CC genotype (26.1 +/- 0.3 vs 25.3 +/- 0.3 kg/m2, P < .05). The frequency of male patients with BMI > or = 25 was similar between the patients with G allele and those with CC genotype (55.1% vs 47.8%, P = not significant). No significant difference between the 2 groups was observed with regard to physical activity, blood pressure, and heart rate. At the end of follow-up, BMI was higher in male patients with G allele compared with patients with CC genotype (26.8 +/- 0.3 vs 25.8 +/- 0.2 kg/m2, P < .01); and the frequency of male patients with BMI >25 kg/m2 was greater in the former (69.0% vs 52.2%, P < .01). According to Cox regression, allele G was a significant predictor of developing overweight or obesity during follow-up. These epidemiologic relations were not significant in female patients. In young male patients with grade I hypertension, RGS2 1114G allele is associated with increased BMI and with greater risk of developing overweight or obesity. The RGS2 1114G allele may be considered a genetic marker that predicts an individual's predisposition to gaining weight.


Assuntos
Hipertensão/genética , Obesidade/genética , Sobrepeso/genética , Polimorfismo Genético/genética , Proteínas RGS/genética , Aumento de Peso/genética , Regiões 3' não Traduzidas/genética , Adolescente , Adulto , Alelos , Estudos de Coortes , Feminino , Seguimentos , Frequência do Gene , Genótipo , Humanos , Hipertensão/epidemiologia , Masculino , Pessoa de Meia-Idade , Análise Multivariada , Obesidade/epidemiologia , Sobrepeso/epidemiologia , Caracteres Sexuais
7.
Arterioscler Thromb Vasc Biol ; 27(12): 2627-33, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17916771

RESUMO

OBJECTIVE: Hyperglycemia is the main determinant of long-term diabetic complications, mainly through induction of oxidative stress. NAD(P)H oxidase is a major source of glucose-induced oxidative stress. In this study, we tested the hypothesis that rosiglitazone (RSG) is able to quench oxidative stress initiated by high glucose through prevention of NAD(P)H oxidase activation. METHODS AND RESULTS: Intracellular ROS were measured using the fluoroprobe TEMPO-9-AC in HUVECs exposed to control (5 mmol/L) and moderately high (10 mmol/L) glucose concentrations. NAD(P)H oxidase and AMPK activities were determined by Western blot. We found that 10 mmol/L glucose increased significantly ROS production in comparison with 5 mmol/L glucose, and that this effect was completely abolished by RSG. Interestingly, inhibition of AMPK, but not PPARgamma, prevented this effect of RSG. AMPK phosphorylation by RSG was necessary for its ability to hamper NAD(P)H oxidase activation, which was indispensable for glucose-induced oxidative stress. Downstream of AMPK activation, RSG exerts antioxidative effects by inhibiting PKC. CONCLUSIONS: This study demonstrates that RSG activates AMPK which, in turn, prevents hyperactivity of NAD(P)H oxidase induced by high glucose, possibly through PKC inhibition. Therefore, RSG protects endothelial cells against glucose-induced oxidative stress with an AMPK-dependent and a PPARgamma-independent mechanism.


Assuntos
Antioxidantes/farmacologia , Células Endoteliais/efeitos dos fármacos , Glucose/metabolismo , Complexos Multienzimáticos/metabolismo , NADPH Oxidases/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais/efeitos dos fármacos , Tiazolidinedionas/farmacologia , Proteínas Quinases Ativadas por AMP , Animais , Células Cultivadas , Células Endoteliais/enzimologia , Células Endoteliais/metabolismo , Ativação Enzimática , Ativadores de Enzimas/farmacologia , Inibidores Enzimáticos/farmacologia , Humanos , Masculino , Glicoproteínas de Membrana/metabolismo , Complexos Multienzimáticos/genética , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/enzimologia , Músculo Esquelético/metabolismo , NADPH Oxidase 2 , NADPH Oxidases/antagonistas & inibidores , PPAR gama/efeitos dos fármacos , PPAR gama/metabolismo , Fosfoproteínas/metabolismo , Fosforilação , Proteína Quinase C/antagonistas & inibidores , Proteína Quinase C/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases/genética , Transporte Proteico , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Ratos , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo , Rosiglitazona , Transfecção , Proteínas rac1 de Ligação ao GTP/metabolismo
8.
Cardiovasc Res ; 73(2): 432-8, 2007 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-17123493

RESUMO

OBJECTIVE: Cardiovascular risk is increased among HIV-infected patients receiving antiretroviral therapy due to the development of hypertension and metabolic abnormalities. In this study, we investigated the effects of long-term treatment with zidovudine (AZT) and vitamin C, alone and in combination, on blood pressure and on the chain of events linking oxidative stress to cardiac damage in the rat. METHODS: Six adult Wistar Kyoto rats received AZT (1 mg/ml) in the drinking water for 8 months, six vitamin C (10 g/kg of food) and AZT, six vitamin C alone, and six served as controls. RESULTS: AZT increased systolic blood pressure, expression of gp91(phox) and p47(phox) subunits of NAD(P)H oxidase, and protein kinase C (PKC) delta activation and reduced antioxidant power of plasma and cardiac homogenates. AZT also caused morphological alterations in cardiac myocyte mitochondria, indicative of functional damage. All of these effects were prevented by vitamin C. CONCLUSION: Chronic AZT administration increases blood pressure and promotes cardiovascular damage through a NAD(P)H oxidase-dependent mechanism that involves PKC delta. Vitamin C antagonizes these adverse effects of AZT in the cardiovascular system.


Assuntos
Antimetabólitos/farmacologia , Ácido Ascórbico/farmacologia , Hipertensão/prevenção & controle , NADPH Oxidases/metabolismo , Vitaminas/farmacologia , Zidovudina/farmacologia , Animais , Antioxidantes/metabolismo , Western Blotting/métodos , Ativação Enzimática/efeitos dos fármacos , Hipertensão/metabolismo , Hipertensão/patologia , Masculino , Glicoproteínas de Membrana/análise , Glicoproteínas de Membrana/metabolismo , Microscopia Eletrônica , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/ultraestrutura , NADPH Oxidase 2 , NADPH Oxidases/análise , Proteínas Nucleares/análise , Proteínas Nucleares/metabolismo , Proteína Quinase C/metabolismo , Ratos , Ratos Endogâmicos WKY , Proteínas de Ligação a Fator Solúvel Sensível a N-Etilmaleimida
9.
Free Radic Biol Med ; 41(3): 473-83, 2006 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-16843828

RESUMO

Insulin can generate oxygen free radicals. Statins, 3-hydroxy-3-methylglutaryl-coenzyme A reductase inhibitors, exert a powerful antioxidant effect. The present study aimed to clarify the mechanisms through which insulin generates free radicals and to assess whether pravastatin modulates such effects. In cultured skin fibroblasts from human volunteers exposed to high insulin concentration, either in the presence or in the absence of pravastatin, insulin induced translocation of the p47(phox) subunit of NAD(P)H oxidase from the cytosol to the membrane and generation of radical oxygen species through a PKC delta-dependent mechanism. The insulin-induced translocation of p47(phox) was PKC delta dependent and attenuated by pravastatin, but independent of the activation of Akt and Rac1. Insulin-induced Akt phosphorylation was increased by pravastatin and ERK1/2 phosphorylation attenuated. The present study demonstrates a novel mechanism by which insulin stimulates the generation of free radicals in human fibroblasts, ex vivo. It involves phosphatidylinositol 3-kinase, PKC delta, and p47(phox) translocation and promotes ERK1/2 phosphorylation. Pravastatin inhibited radical oxygen species production by inhibiting PKC delta. These observations offer a robust explanation for the positive effects of pravastatin treatment in patients with insulin resistance syndrome.


Assuntos
Insulina/farmacologia , Pravastatina/farmacologia , Proteína Quinase C-delta/metabolismo , Células Cultivadas , Ativação Enzimática , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Fibroblastos , Radicais Livres/metabolismo , Humanos , Isoenzimas/genética , Isoenzimas/metabolismo , NADPH Oxidases/metabolismo , Fosforilação/efeitos dos fármacos , Proteína Quinase C-delta/genética , Transporte Proteico , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Interferente Pequeno/genética , Espécies Reativas de Oxigênio/metabolismo , Pele/efeitos dos fármacos , Pele/metabolismo , Proteínas rac1 de Ligação ao GTP/antagonistas & inibidores , Proteínas rac1 de Ligação ao GTP/metabolismo
10.
J Hypertens ; 24(4): 757-66, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16531806

RESUMO

OBJECTIVE: The aim of the present study was to determine whether inhibition of reduced nicotinamide adenine dinucleotide (phosphate) [NAD(P)H] oxidase and of various superoxide generating systems could affect the collagen production, the mRNA and protein expression of collagen types I and III in control and angiotensin II-treated cardiac fibroblasts. METHODS: Cardiac fibroblasts from passage 2 from normal male adult rats were cultured to confluency and incubated in serum-free Dulbecco's modified Eagle's medium for 24 h. The cells were then preincubated with(out) the tested inhibitors for 1 h and then further incubated with(out) angiotensin II (1 micromol/l) for 24 h. Collagen production was measured spectrophotometrically with picrosirius red as dye and with [3H]proline incorporation; collagen type I and III content by enzyme-linked immunosorbent assay and collagen type I and III mRNA expression by semi-quantitative reverse transcription-polymerase chain reaction (RT-PCR). NAD(P)H-dependent superoxide anion production was assayed as superoxide dismutase-inhibitable cytochrome c reduction. Intracellular formation of reactive oxygen species was assessed with 2',7'-dichlorofluorescein diacetate as fluorescent probe. RESULTS: Angiotensin II stimulated the collagen production, the collagen I and III content and mRNA expression in cardiac fibroblasts, and apocynin, a membrane NAD(P)H oxidase inhibitor, abolished this induction. Rotenone, allopurinol, indomethacin, nordihydroguiaretic acid, ketoconazole and nitro-L-arginine (inhibitors of mitochondrial NAD(P)H oxidase, xanthine oxidase, cyclooxygenase, lipoxygenase, cytochrome P450 oxygenase and nitric oxide synthase, respectively) did not affect the angiotensin II-induced collagen production. Angiotensin II increased the NAD(P)H-dependent superoxide anion production and the intracellular generation of reactive oxygen species in cardiac fibroblasts, and apocynin abrogated this rise. CONCLUSIONS: Our data show that in adult rat cardiac fibroblasts the membrane-associated NAD(P)H oxidase complex is the predominant source of superoxide anion and reactive oxygen species generation in angiotensin II-stimulated adult cardiac fibroblasts. Inhibition of this NAD(P)H oxidase complex with apocynin completely blocked the angiotensin II-stimulated collagen production, and collagen I and III protein and mRNA expression.


Assuntos
Angiotensina II/farmacologia , Colágeno/metabolismo , Fibroblastos/efeitos dos fármacos , Miocárdio/citologia , Espécies Reativas de Oxigênio/metabolismo , Acetofenonas/farmacologia , Animais , Células Cultivadas , Colágeno/genética , Colágeno Tipo I/genética , Colágeno Tipo I/metabolismo , Colágeno Tipo III/genética , Colágeno Tipo III/metabolismo , Inibidores Enzimáticos/farmacologia , Fibroblastos/citologia , Fibroblastos/metabolismo , Expressão Gênica/efeitos dos fármacos , Masculino , Metaloproteinase 1 da Matriz/metabolismo , NADP/metabolismo , NADPH Oxidases/antagonistas & inibidores , NADPH Oxidases/metabolismo , Oniocompostos/farmacologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Ratos Wistar , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Inibidor Tecidual de Metaloproteinase-1/metabolismo
11.
J Hypertens ; 24(6): 1115-24, 2006 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16685212

RESUMO

CONTEXT: RGS2 (regulators of G-protein signaling) is a negative regulator of Galphaq protein signaling, which mediates the action of several vasoconstrictors. RGS2-deficient mouse line exhibits a hypertensive phenotype and a prolonged response to vasoconstrictors. OBJECTIVE: To compare RGS2 expression in peripheral blood mononuclear cells (PBMs) and cultured fibroblasts from normotensive subjects and hypertensive patients. METHODS: PBMs were isolated from 100 controls and 150 essential hypertensives. Additionally, fibroblasts were isolated from skin biopsy of 11 normotensives and 12 hypertensives and cultured up to the third passage. Quantitative mRNA and protein RGS2 expression were performed by real-time quantitative reverse transcriptase-polymerase chain reaction and by immunoblotting, respectively. Free Ca measurement was performed in monolayers of 24-h serum-deprived cells, using FURA-2 AM. Phosphorylation of the extracellular signal-regulated kinases ERK1/2 was measured by immunoblotting. Polymorphism (C1114G) in the 3' untranslated region of the RGS2 gene was investigated by direct sequencing and real-time polymerase chain reaction (PCR). RESULTS: RGS2 mRNA expression was significantly lower in PBM and in fibroblasts from hypertensives, in comparison to normotensives. C1114G polymorphism was associated with RGS2 expression, with the lowest values in GG hypertensives. The 1114G allele frequency was increased in hypertensives compared with normotensives. Angiotensin II-stimulated intracellular Ca increase and ERK1/2 phosphorylation were higher in fibroblasts from hypertensive patients compared with control subjects, and in those with the G allele, independently of the blood pressure status. The angiotensin II-stimulated Ca mobilization and ERK1/2 phosphorylation were negatively correlated with RGS2 mRNA expression. CONCLUSION: Low expression of RGS2 contributes to increased G-protein-coupled signaling in hypertensive patients. The allele G is associated with low RGS2 expression and blood pressure increase in humans.


Assuntos
Angiotensina II/fisiologia , Cálcio/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Hipertensão/metabolismo , Proteínas RGS/metabolismo , Adulto , Células Cultivadas , Citosina/fisiologia , Feminino , Fibroblastos/metabolismo , Guanina/fisiologia , Humanos , Hipertensão/genética , Líquido Intracelular/metabolismo , Leucócitos Mononucleares/metabolismo , Masculino , Pessoa de Meia-Idade , Fosforilação , Polimorfismo de Nucleotídeo Único , Proteínas RGS/genética
12.
Diabetes ; 53(5): 1344-51, 2004 May.
Artigo em Inglês | MEDLINE | ID: mdl-15111505

RESUMO

Oxidative stress may be involved in the development of vascular complications associated with diabetes; however, the molecular mechanism responsible for increased production of free radicals in diabetes remains uncertain. Therefore, we examined whether acute hyperinsulinemia increases the production of free radicals and whether this condition affects proliferative extracellular signal-regulated kinase (ERK-1 and -2) signaling in human fibroblasts in vitro. Insulin treatment significantly increased intracellular superoxide anion (O(2)(-)) production, an effect completely abolished by Tiron, a cell-permeable superoxide dismutase (SOD) mimetic and by polyethylene glycol (PEG)-SOD, but not by PEG catalase. Furthermore, insulin-induced O(2)(-) production was attenuated by the NAD(P)H inhibitor apocynin, but not by rotenone or oxypurinol. Inhibition of the phosphatidylinositol 3'-kinase (PI 3'-kinase) pathway with LY294002 blocked insulin-stimulated O(2)(-) production, suggesting a direct involvement of PI 3'-kinase in the activation of NAD(P)H oxidase. The insulin-induced free radical production led to membranous translocation of p47phox and markedly enhanced ERK-1 and -2 activation in human fibroblasts. In conclusion, these findings provided direct evidence that elevated insulin levels generate O(2)(-) by an NAD(P)H-dependent mechanism that involves the activation of PI 3'-kinase and stimulates ERK-1- and ERK-2-dependent pathways. This effect of insulin may contribute to the pathogenesis and progression of cardiovascular disease in the insulin resistance syndrome.


Assuntos
Fibroblastos/metabolismo , Radicais Livres/metabolismo , Hiperinsulinismo/metabolismo , NADP/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Pele/metabolismo , Transporte Biológico/efeitos dos fármacos , Células Cultivadas , Fibroblastos/efeitos dos fármacos , Humanos , Insulina/farmacologia , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno , Proteínas Quinases Ativadas por Mitógeno/metabolismo , NADPH Oxidases , Estresse Oxidativo , Fosfoproteínas/metabolismo , Fosforilação/efeitos dos fármacos , Pele/citologia , Pele/efeitos dos fármacos
13.
J Hypertens ; 23(4): 793-800, 2005 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15775784

RESUMO

BACKGROUND: Fibroblasts are involved in the remodeling of the heart and of the vasculature associated to arterial hypertension, and an abnormal extracellular signal-regulated kinase 1/2 (ERK1/2) activation by angiotensin II (Ang II) plays a pivotal role in this process. However, the intracellular pathways leading to cell hypertrophy and hyperplasia, as well as to collagen production, are still incompletely known. OBJECTIVE: To investigate the role of superoxide anion (O2) and of nicotinamide adenine dinucleotide phosphate (NAD(P)H) oxidase in Ang II-stimulated ERK1/2 over-activation in fibroblasts from hypertensive patients. METHODS: O2 production was measured in skin fibroblasts from hypertensives (HT, n = 11) and from normotensive controls (NT, n = 10) by electron spin resonance technique. ERK1/2 phosphorylation and p47phox NAD(P)H oxidase subunit translocation were measured by western blot. RESULTS: Ang II (1 micromol/l) induced a larger p47phox subunit translocation and increased intracellular O2 production to a larger extent in HT in comparison to NT and this effect was blocked by apocynin, an inhibitor of the NAD(P)H oxidase. Ang II increased ERK1/2 phosphorylation more in HT than in NT. The Ang II-induced ERK1/2 phosphorylation was inhibited by apocynin in a dose-dependent manner in NT, but not in HT. CONCLUSIONS: The chain of cellular events leading to increased ERK1/2 responsiveness to Ang II in hypertension include an exaggerated response of p47phox, NAD(P)H oxidase and O2, but it is partially resistant to apocynin. Therefore, NAD(P)H-dependent reactive oxygen species (ROS) production is not the only determinant of the exaggerated ERK1/2 responsiveness in fibroblasts of hypertensives (HT).


Assuntos
Angiotensina II/metabolismo , Hipertensão/metabolismo , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Fosfoproteínas/metabolismo , Vasoconstritores/metabolismo , Acetofenonas/farmacologia , Adulto , Angiotensina II/farmacologia , Antioxidantes/farmacologia , Membrana Celular/enzimologia , Células Cultivadas , Citosol/enzimologia , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Radicais Livres/metabolismo , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/fisiologia , Pessoa de Meia-Idade , NADPH Oxidases , Fosforilação/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Vasoconstritores/farmacologia
14.
J Hypertens ; 22(4): 783-92, 2004 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15126921

RESUMO

BACKGROUND: Studies in experimental animals and human cells have demonstrated increased intracellular calcium (Ca(i2) signalling and Galphai signal transduction associated with hypertension. We have recently shown that angiotensin II-induced mobilization of Ca(i2) is enhanced in fibroblasts from hypertensive individuals in comparison with that in normotensive individuals and that it is blunted by insulin and pertussis toxin in insulin-sensitive, but not in insulin-resistant, patients. This suggests that G(i)-mediated signal transduction is reduced in insulin-resistant hypertension. OBJECTIVE: To investigate the expression and regulation of Galpha(i2) subunit in insulin-sensitive and insulin-resistant hypertensive individuals. METHODS: G protein alpha(i2) subunit mRNA was measured in cultured skin fibroblasts from patients with insulin-sensitive and insulin-resistant hypertension, by real-time reverse transcriptase polymerase chain reaction. We also investigated the effects of short-term exposure to fetal calf serum, angiotensin II and insulin, alone and in combination, on the expression of Galpha(i2) in vitro. Spectrofluorophotometric measurement of free Cai was performed in monolayers of 24 h serum-deprived cells in basal conditions and after exposure to angiotensin II, with and without pre-incubation with insulin. RESULTS: Expression of Galpha(i2) was significantly greater in fibroblasts from hypertensive individuals than in normotensive individuals and the increase was unrelated to age and body mass. The difference was largely accounted for by greater values in insulin-sensitive than in insulin-resistant hypertensive individuals. In fibroblasts from those with insulin-sensitive hypertension, angiotensin II and insulin were additive to fetal calf serum in increasing the expression of Galpha(i2). In these patients, insulin blunted the angiotensin-II induced Cai transient. In contrast, in those with insulin-resistant hypertension, Galpha(i2) was lower and unresponsive to angiotensin II and insulin. Finally, in fibroblasts from insulin-resistant patients, insulin was unable to reduce the angiotensin II-induced Cai peak. CONCLUSIONS: A subnormal Galpha(i2)-mediated signal transduction may be involved in the pathogenesis of cellular insulin resistance in hypertension. This novel Galpha(i2)-mediated signal transduction associated with insulin sensitivity in fibroblasts may help to control excessive angiotensin II signalling.


Assuntos
Fibroblastos/metabolismo , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Hipertensão/metabolismo , Resistência à Insulina , Adulto , Angiotensina II/farmacologia , Cálcio/análise , Cálcio/metabolismo , Células Cultivadas , Meios de Cultura Livres de Soro , Jejum/sangue , Feminino , Fibroblastos/efeitos dos fármacos , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/genética , Humanos , Hipoglicemiantes/farmacologia , Insulina/farmacologia , Masculino , Pessoa de Meia-Idade , RNA Mensageiro/metabolismo , Pele/citologia , Vasoconstritores/farmacologia
15.
Biochem Pharmacol ; 68(7): 1331-8, 2004 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-15345322

RESUMO

Callipeltin A is a cyclic depsidecapeptide isolated from the marine sponges Callipelta sp. and Latrunculia sp. that has been previously shown to increase the force of contraction of guinea-pig atria through the inhibition of Na+/Ca2+ exchanger (NCX). We investigated the effect of callipeltin A on guinea-pig aortic rings contracted by procedures that activate NCX in "calcium entry mode". Callipeltin A did not inhibit these contractions. Resting aorta responded to callipeltin A with a remarkable contraction that was concentration-dependent (EC50 0.44microM). This contraction was not inhibited by the calcium channel blocker verapamil and was not mediated by the activation of alpha-adrenergic or endothelin-1 receptors. Pre-incubation of aortic rings with 0.5mM amiloride, an inhibitor of NCX, completely prevented callipeltin A-induced contraction. Furthermore, callipeltin A (EC50 0.51microM) increased Na+ efflux of Na-loaded erythrocytes. 1H and 13C NMR resonances of callipeltin A revealed small but significant changes in the titration with K+ and Na+ salts. It is suggested that the effect of callipeltin A on cardiac and vascular preparations is linked to a Na-ionophore action.


Assuntos
Depsipeptídeos , Ionóforos/metabolismo , Músculo Liso Vascular/efeitos dos fármacos , Peptídeos Cíclicos/farmacologia , Sódio/metabolismo , Vasoconstrição/efeitos dos fármacos , Animais , Aorta , Transporte Biológico/efeitos dos fármacos , Cálcio/metabolismo , Cobaias , Técnicas In Vitro , Espectroscopia de Ressonância Magnética , Músculo Liso Vascular/fisiologia
16.
Am J Hypertens ; 17(7): 604-10, 2004 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15233979

RESUMO

BACKGROUND: Insulin resistance, a frequent finding in hypertensive patients, leads to accelerated cardiovascular damage. It has been suggested that a crosstalk between angiotensin II and insulin signaling pathways may provoke insulin resistance, and may contribute to the development of cardiovascular damage. To identify a common pathophysiologic pathway between metabolic disorders and cardiovascular remodeling, we investigated the effect of angiotensin II and insulin on extracellular signal regulated kinases 1 and 2 (ERK1/2), isoforms of mitogen-activated protein kinases (MAPK) involved in cellular proliferation and extracellular matrix deposition. METHODS: Skin fibroblasts from normotensive subjects, insulin sensitive hypertensive subjects, and insulin resistant hypertensive subjects were cultured and used after four passages. The ERK1/2 expression and phosphorylation were measured by Western blot using specific antibodies, respectively anti-ERK1/2 and anti-pERK1/2. Expression of AT1 receptor for angiotensin II was determined by reverse transcriptase-polymerase chain reaction in real time. RESULTS: The ERK1/2 were similarly expressed in skin fibroblasts from all groups; ERK1/2 phosporylation evoked by angiotensin II was significantly higher in fibroblasts from hypertensive patients in comparison to normotensive subjects, but the increase was observed only in insulin resistant hypertensive subjects. The effect of insulin on ERK1/2 phosphorylation was not significantly different in the three groups. Treatment with the combination of insulin and angiotensin II increased ERK1/2 phosphorylation to a greater extent in comparison to the single agonists in normotensive subjects and in insulin sensitive but not in insulin resistant hypertensive subjects. CONCLUSIONS: Angiotensin II stimulated ERK1/2 activation is increased in insulin resistant hypertensive subjects, and it may play a role in the pathogenesis of insulin resistance and accelerated cardiovascular damage.


Assuntos
Angiotensina II/uso terapêutico , Ativação Enzimática/efeitos dos fármacos , Hipertensão/tratamento farmacológico , Hipertensão/metabolismo , Hipoglicemiantes/uso terapêutico , Insulina/uso terapêutico , Proteína Quinase 1 Ativada por Mitógeno/efeitos dos fármacos , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteínas Quinases Ativadas por Mitógeno/efeitos dos fármacos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Vasoconstritores/uso terapêutico , Adulto , Angiotensina II/administração & dosagem , Biomarcadores/sangue , Pressão Sanguínea/efeitos dos fármacos , Relação Dose-Resposta a Droga , Feminino , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Humanos , Hipertensão/fisiopatologia , Hipoglicemiantes/administração & dosagem , Insulina/administração & dosagem , Resistência à Insulina , Itália , Masculino , Pessoa de Meia-Idade , Proteína Quinase 3 Ativada por Mitógeno , Fosforilação/efeitos dos fármacos , Fosfotransferases/efeitos dos fármacos , Fosfotransferases/metabolismo , Receptor Tipo 1 de Angiotensina/uso terapêutico , Fatores de Tempo , Resultado do Tratamento , Vasoconstritores/administração & dosagem
17.
Ann Ital Med Int ; 19(4): 240-8, 2004.
Artigo em Italiano | MEDLINE | ID: mdl-15678704

RESUMO

Hypertension is a common disorder of multifactorial origin that constitutes a major risk factor for cardiovascular events such as stroke and myocardial infarction. The subunits of the heterotrimeric G proteins are attractive candidate gene products for both susceptibility to essential hypertension and interindividual variation in blood pressure. A polymorphism (825C/T) in exon 10 of the GNB3 gene, that encodes for the beta3 subunit, has recently been described. The 825T allele is associated with alternative splicing of the gene and formation of a truncated but functionally active beta3 subunit. Carriers of the 825T allele appear to have an increased risk for hypertension, obesity, insulin-resistance and left ventricular hypertrophy. Moreover, 825T allele carriers respond with a stronger decrease in blood pressure to therapy with a thiazide diuretic and with clonidine. GNB3 825T allele may be regarded as a potential genetic marker for a better definition of the risk profile of hypertensive subjects, but further studies are needed to precisely define the impact of T allele on the prognosis of such patients.


Assuntos
Doenças Cardiovasculares/genética , Subunidades beta da Proteína de Ligação ao GTP/genética , Polimorfismo Genético , Citosina , Nefropatias Diabéticas/genética , Frequência do Gene , Marcadores Genéticos , Humanos , Hipertensão/genética , Hipertrofia Ventricular Esquerda/genética , Resistência à Insulina , Obesidade/genética , Fatores de Risco , Timina
19.
Am J Hypertens ; 24(2): 241-6, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20966899

RESUMO

BACKGROUND: A silent polymorphism (+1166 A/C single-nucleotide polymorphism) localized in the 3'-UTR (untranslated region) of the human angiotensin II type-1 receptor (AT1R) has been associated with hypertension and cardiovascular complications. The +1166 A/C is recognized by a specific microRNA-155 (miR-155), which is base-pairing complementary with the +1166 A-allele but not with the mutant +1166 C allele. Aim of our study was to investigate the interplay between miR-155 and AT1R protein expression. METHODS: Sixty-four subjects were selected for the +1166 A/C from the cohort of hypertensives (n = 573) of the Hypertension and Ambulatory Recording Venetia Study (HARVEST): 25 were homozygous for the 1166 A allele, 20 heterozygous, and 19 homozygous for the 1166 C allele. RESULTS: miR-155 expression was significantly decreased in subjects with CC genotype in comparison to AA and AC genotype. AT1R protein expression was significantly increased in the CC group in comparison to AA and AC (P < 0.01) although AT1R mRNA expression was not significantly different in the three groups. AT1R protein expression was positively correlated with systolic and diastolic blood pressure and negatively correlated with miR-155 expression level. Plasma transforming growth factor-ß1 (TGF-ß1) may have a modulator role in the interplay between miR-155 and AT1R protein expression as it was correlated negatively with miR-155 expression and positively with AT1R protein expression in subjects with CC genotype. CONCLUSION: The interplay between miR-155 expression, +1166C polymorphism, and AT1R protein expression may have a role in the regulation of blood pressure.


Assuntos
Pressão Sanguínea/genética , Hipertensão/genética , MicroRNAs/análise , Polimorfismo Genético , Receptor Tipo 1 de Angiotensina/genética , Regiões 3' não Traduzidas , Adulto , Idade de Início , Feminino , Predisposição Genética para Doença , Heterozigoto , Homozigoto , Humanos , Hipertensão/sangue , Hipertensão/epidemiologia , Hipertensão/fisiopatologia , Itália/epidemiologia , Masculino , Fenótipo , Estudos Prospectivos , RNA Mensageiro/sangue , Receptor Tipo 1 de Angiotensina/sangue , Fator de Crescimento Transformador beta1/sangue
20.
J Hypertens ; 28(5): 1104-8, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20375904

RESUMO

OBJECTIVE: RGS2 (regulators of G-protein signalling) is a negative regulator of Galphaq protein signalling, which mediates the action of several vasoconstrictors. Low RGS2 expression increases G-protein-coupled signalling in hypertensive patients. The aim of the present study was to correlate RGS2 expression in peripheral blood mononuclear cells (PBMs) with response to antihypertensive therapy in never-treated patients with essential hypertension. METHODS AND DESIGN: RGS2 expression was measured by real-time quantitative RT-PCR in peripheral blood mononuclear cells (PBMs) from 102 essential hypertensives. The diagnosis of essential hypertension was based on all clinically required tests, including the captopril suppression test. Antihypertensive treatment was given in accordance to international guidelines. End-point of the study was systolic blood pressure (BP) less than 140 mmHg and diastolic BP less than 90 mmHg with three or less different antihypertensive agents, which identified responders to treatment. Resistant hypertension was defined as the failure to control systolic and/or diastolic BP despite at least three different classes of antihypertensive agents, including a diuretic. RESULTS: During follow-up, 85 (83%) patients reached the end point (responders). Resistant hypertensives (n = 17, 17%) were older, had higher baseline BP, plasma aldosterone and aldosterone: renin ratio (ARR) and lower plasma renin activity than patients who reached the end point. RGS2 was negatively correlated to systolic BP at enrollment and significantly lower in PBMs from resistant hypertensives in comparison with patients that reached BP goal. According to logistic regression analysis, high RGS2 expression was predictor of reaching BP goal, whereas high ARR after captopril, age and systolic pressure at enrolment were predictor of resistant hypertension. CONCLUSION: RGS2 expression affects the response to antihypertensive treatment. Reduced RGS2 expression contributes to resistance to antihypertensive agents through poor negative feedback on the effects of aldosterone and of other vasoactive agents.


Assuntos
Aldosterona/sangue , Anti-Hipertensivos/uso terapêutico , Hipertensão/tratamento farmacológico , Proteínas RGS/genética , Renina/sangue , Adolescente , Adulto , Idoso , Pressão Sanguínea/efeitos dos fármacos , Estudos de Coortes , Resistência a Medicamentos , Retroalimentação Fisiológica , Feminino , Expressão Gênica/efeitos dos fármacos , Humanos , Hipertensão/sangue , Hipertensão/genética , Hipertensão/fisiopatologia , Masculino , Pessoa de Meia-Idade , RNA Mensageiro/sangue , RNA Mensageiro/genética , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA