Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Hum Mol Genet ; 28(6): 972-979, 2019 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-30481285

RESUMO

FBXL3 (F-Box and Leucine Rich Repeat Protein 3) encodes a protein that contains an F-box and several tandem leucine-rich repeats (LRR) domains. FBXL3 is part of the SCF (Skp1-Cullin-F box protein) ubiquitin ligase complex that binds and leads to phosphorylation-dependent degradation of the central clock protein cryptochromes (CRY1 and CRY2) by the proteasome and its absence causes circadian phenotypes in mice and behavioral problems. No FBXL3-related phenotypes have been described in humans. By a combination of exome sequencing and homozygosity mapping, we analyzed two consanguineous families with intellectual disability and identified homozygous loss-of-function (LoF) variants in FBXL3. In the first family, from Pakistan, an FBXL3 frameshift variant [NM_012158.2:c.885delT:p.(Leu295Phefs*25)] was the onlysegregating variant in five affected individuals in two family loops (LOD score: 3.12). In the second family, from Lebanon, we identified a nonsense variant [NM_012158.2:c.445C>T:p.(Arg149*)]. In a third patient from Italy, a likely deleterious non-synonymous variant [NM_012158.2:c.1072T>C:p.(Cys358Arg)] was identified in homozygosity. Protein 3D modeling predicted that the Cys358Arg change influences the binding with CRY2 by destabilizing the structure of the FBXL3, suggesting that this variant is also likely to be LoF. The eight affected individuals from the three families presented with a similar phenotype that included intellectual disability, developmental delay, short stature and mild facial dysmorphism, mainly large nose with a bulbous tip. The phenotypic similarity and the segregation analysis suggest that FBXL3 biallelic, LoF variants link this gene with syndromic autosomal recessive developmental delay/intellectual disability.


Assuntos
Alelos , Deficiências do Desenvolvimento/genética , Nanismo/genética , Proteínas F-Box/genética , Variação Genética , Deficiência Intelectual/genética , Adulto , Consanguinidade , Análise Mutacional de DNA , Deficiências do Desenvolvimento/diagnóstico , Nanismo/diagnóstico , Proteínas F-Box/química , Fácies , Feminino , Homozigoto , Humanos , Deficiência Intelectual/diagnóstico , Masculino , Pessoa de Meia-Idade , Modelos Moleculares , Linhagem , Fenótipo , Conformação Proteica , Relação Estrutura-Atividade , Adulto Jovem
2.
Genet Med ; 20(7): 778-784, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-28837161

RESUMO

PURPOSE: To elucidate the novel molecular cause in two unrelated consanguineous families with autosomal recessive intellectual disability. METHODS: A combination of homozygosity mapping and exome sequencing was used to locate the plausible genetic defect in family F162, while only exome sequencing was followed in the family PKMR65. The protein 3D structure was visualized with the University of California-San Francisco Chimera software. RESULTS: All five patients from both families presented with severe intellectual disability, aggressive behavior, and speech and motor delay. Four of the five patients had microcephaly. We identified homozygous missense variants in LINGO1, p.(Arg290His) in family F162 and p.(Tyr288Cys) in family PKMR65. Both variants were predicted to be pathogenic, and segregated with the phenotype in the respective families. Molecular modeling of LINGO1 suggests that both variants interfere with the glycosylation of the protein. CONCLUSION: LINGO1 is a transmembrane receptor, predominantly found in the central nervous system. Published loss-of-function studies in mouse and zebrafish have established a crucial role of LINGO1 in normal neuronal development and central nervous system myelination by negatively regulating oligodendrocyte differentiation and neuronal survival. Taken together, our results indicate that biallelic LINGO1 missense variants cause autosomal recessive intellectual disability in humans.


Assuntos
Deficiência Intelectual/genética , Proteínas de Membrana/genética , Proteínas do Tecido Nervoso/genética , Alelos , Mapeamento Cromossômico/métodos , Família , Feminino , Frequência do Gene/genética , Genótipo , Homozigoto , Humanos , Transtornos do Desenvolvimento da Linguagem/genética , Masculino , Proteínas de Membrana/fisiologia , Microcefalia/genética , Atividade Motora/genética , Mutação de Sentido Incorreto/genética , Proteínas do Tecido Nervoso/fisiologia , Paquistão , Linhagem , Fenótipo , Análise de Sequência de Proteína , Sequenciamento do Exoma
3.
Genes (Basel) ; 14(2)2023 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-36833331

RESUMO

This study aimed to find the molecular basis of Bardet-Biedl syndrome (BBS) in Pakistani consanguineous families. A total of 12 affected families were enrolled. Clinical investigations were performed to access the BBS-associated phenotypes. Whole exome sequencing was conducted on one affected individual from each family. The computational functional analysis predicted the variants' pathogenic effects and modeled the mutated proteins. Whole-exome sequencing revealed 9 pathogenic variants in six genes associated with BBS in 12 families. The BBS6/MKS was the most common BBS causative gene identified in five families (5/12, 41.6%), with one novel (c.1226G>A, p.Gly409Glu) and two reported variants. c.774G>A, Thr259LeuTer21 was the most frequent BBS6/MMKS allele in three families 3/5 (60%). Two variants, c.223C>T, p.Arg75Ter and a novel, c. 252delA, p.Lys85STer39 were detected in the BBS9 gene. A novel 8bp deletion c.387_394delAAATAAAA, p. Asn130GlyfsTer3 was found in BBS3 gene. Three known variants were detected in the BBS1, BBS2, and BBS7 genes. Identification of novel likely pathogenic variants in three genes reaffirms the allelic and genetic heterogeneity of BBS in Pakistani patients. The clinical differences among patients carrying the same pathogenic variant may be due to other factors influencing the phenotype, including variants in other modifier genes.


Assuntos
Síndrome de Bardet-Biedl , Humanos , Linhagem , Síndrome de Bardet-Biedl/genética , Paquistão , Fenótipo , Alelos , Proteínas Associadas aos Microtúbulos/genética
4.
Genes (Basel) ; 14(5)2023 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-37239474

RESUMO

Bardet-Biedl syndrome (BBS) is a rare clinically and genetically heterogeneous autosomal recessive multi-systemic disorder with 22 known genes. The primary clinical and diagnostic features include six different hallmarks, such as rod-cone dystrophy, learning difficulties, renal abnormalities, male hypogonadism, post-axial polydactyly, and obesity. Here, we report nine consanguineous families and a non-consanguineous family with several affected individuals presenting typical clinical features of BBS. In the present study, 10 BBS Pakistani families were subjected to whole exome sequencing (WES), which revealed novel/recurrent gene variants, including a homozygous nonsense mutation (c.94C>T; p.Gln32Ter) in the IFT27 (NM_006860.5) gene in family A, a homozygous nonsense mutation (c.160A>T; p.Lys54Ter) in the BBIP1 (NM_001195306.1) gene in family B, a homozygous nonsense variant (c.720C>A; p.Cys240Ter) in the WDPCP (NM_015910.7) in family C, a homozygous nonsense variant (c.505A>T; p.Lys169Ter) in the LZTFL1 (NM_020347.4) in family D, pathogenic homozygous 1 bp deletion (c.775delA; p.Thr259Leufs*21) in the MKKS/BBS5 (NM_170784.3) gene in family E, a pathogenic homozygous missense variant (c.1339G>A; p.Ala447Thr) in BBS1 (NM_024649.4) in families F and G, a pathogenic homozygous donor splice site variant (c.951+1G>A; p?) in BBS1 (NM_024649.4) in family H, a pathogenic bi-allelic nonsense variant in MKKS (NM_170784.3) (c.119C>G; p.Ser40*) in family I, and homozygous pathogenic frameshift variants (c.196delA; p.Arg66Glufs*12) in BBS5 (NM_152384.3) in family J. Our findings extend the mutation and phenotypic spectrum of four different types of ciliopathies causing BBS and also support the importance of these genes in the development of multi-systemic human genetic disorders.


Assuntos
Síndrome de Bardet-Biedl , Ciliopatias , Polidactilia , Humanos , Masculino , Síndrome de Bardet-Biedl/diagnóstico , Códon sem Sentido , Mutação , Polidactilia/genética , Proteínas Associadas aos Microtúbulos/genética , Proteínas do Citoesqueleto/genética , Proteínas de Ligação a Fosfato/genética
5.
Nat Commun ; 14(1): 2026, 2023 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-37041148

RESUMO

Craniofacial microsomia (CFM; also known as Goldenhar syndrome), is a craniofacial developmental disorder of variable expressivity and severity with a recognizable set of abnormalities. These birth defects are associated with structures derived from the first and second pharyngeal arches, can occur unilaterally and include ear dysplasia, microtia, preauricular tags and pits, facial asymmetry and other malformations. The inheritance pattern is controversial, and the molecular etiology of this syndrome is largely unknown. A total of 670 patients belonging to unrelated pedigrees with European and Chinese ancestry with CFM, are investigated. We identify 18 likely pathogenic variants in 21 probands (3.1%) in FOXI3. Biochemical experiments on transcriptional activity and subcellular localization of the likely pathogenic FOXI3 variants, and knock-in mouse studies strongly support the involvement of FOXI3 in CFM. Our findings indicate autosomal dominant inheritance with reduced penetrance, and/or autosomal recessive inheritance. The phenotypic expression of the FOXI3 variants is variable. The penetrance of the likely pathogenic variants in the seemingly dominant form is reduced, since a considerable number of such variants in affected individuals were inherited from non-affected parents. Here we provide suggestive evidence that common variation in the FOXI3 allele in trans with the pathogenic variant could modify the phenotypic severity and accounts for the incomplete penetrance.


Assuntos
Síndrome de Goldenhar , Animais , Camundongos , Síndrome de Goldenhar/patologia , Assimetria Facial , Linhagem , Fatores de Transcrição Forkhead
6.
NPJ Genom Med ; 6(1): 94, 2021 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-34764295

RESUMO

Intellectual disability (ID) is a highly heterogeneous disorder with hundreds of associated genes. Despite progress in the identification of the genetic causes of ID following the introduction of high-throughput sequencing, about half of affected individuals still remain without a molecular diagnosis. Consanguineous families with affected individuals provide a unique opportunity to identify novel recessive causative genes. In this report, we describe a novel autosomal recessive neurodevelopmental disorder. We identified two consanguineous families with homozygous variants predicted to alter the splicing of ATP9A which encodes a transmembrane lipid flippase of the class II P4-ATPases. The three individuals homozygous for these putatively truncating variants presented with severe ID, motor and speech impairment, and behavioral anomalies. Consistent with a causative role of ATP9A in these patients, a previously described Atp9a-/- mouse model showed behavioral changes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA