Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Toxicol Ind Health ; 37(12): 752-762, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34794353

RESUMO

Metalworkers are exposed to numerous chemicals in their workplace environment, such as solvents, heavy metals, and metalworking fluids, that have a negative impact on their health. Furthermore, there is an increase in the prevalence of chronic diseases among metalworkers; however, the molecular mechanisms involved in this increased predisposition to chronic diseases are unclear. Considering that occupational exposure represents a potential risk for metalworkers, the aim of this study was to measure biomarkers of oxidative stress, inflammation, and cytotoxicity in the peripheral blood of metalworkers from Southern Brazil. The study included 40 metalworkers and 20 individuals who did not perform activities with any recognized exposure to chemical substances, such as those working in administration, commerce, and education, as controls. Cellular and molecular biomarkers as leukocyte viability, intracellular production of reactive species, mitochondrial mass and membrane potential and plasma lipid peroxidation, sulfhydryl groups, total antioxidant capacity, and butyrylcholinesterase activity were evaluated in the blood of metalworkers and controls. Metalworkers were found to have higher rates of apoptosis, increased production of reactive species, and increased mitochondrial potential and mass in leukocytes associated with decreased antioxidant defenses and increased activity of the butyrylcholinesterase enzyme in their plasma. It can be concluded that cytotoxicity, oxidative stress, and inflammation are involved in the multiplicity of health outcomes related to chemical exposure in the metalworking industry.


Assuntos
Apoptose/efeitos dos fármacos , Biomarcadores/sangue , Colinérgicos/sangue , Exposição Ocupacional/efeitos adversos , Estresse Oxidativo/efeitos dos fármacos , Adolescente , Adulto , Brasil , Butirilcolinesterase , Estudos Transversais , Feminino , Humanos , Masculino , Ferreiros , Pessoa de Meia-Idade , Adulto Jovem
2.
Biochim Biophys Acta ; 1863(12): 3001-3014, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27663072

RESUMO

QUIN is a glutamate agonist playing a role in the misregulation of the cytoskeleton, which is associated with neurodegeneration in rats. In this study, we focused on microglial activation, FGF2/Erk signaling, gap junctions (GJs), inflammatory parameters and redox imbalance acting on cytoskeletal dynamics of the in QUIN-treated neural cells of rat striatum. FGF-2/Erk signaling was not altered in QUIN-treated primary astrocytes or neurons, however cytoskeleton was disrupted. In co-cultured astrocytes and neurons, QUIN-activated FGF2/Erk signaling prevented the cytoskeleton from remodeling. In mixed cultures (astrocyte, neuron, microglia), QUIN-induced FGF-2 increased level failed to activate Erk and promoted cytoskeletal destabilization. The effects of QUIN in mixed cultures involved redox imbalance upstream of Erk activation. Decreased connexin 43 (Cx43) immunocontent and functional GJs, was also coincident with disruption of the cytoskeleton in primary astrocytes and mixed cultures. We postulate that in interacting astrocytes and neurons the cytoskeleton is preserved against the insult of QUIN by activation of FGF-2/Erk signaling and proper cell-cell interaction through GJs. In mixed cultures, the FGF-2/Erk signaling is blocked by the redox imbalance associated with microglial activation and disturbed cell communication, disrupting the cytoskeleton. Thus, QUIN signal activates differential mechanisms that could stabilize or destabilize the cytoskeleton of striatal astrocytes and neurons in culture, and glial cells play a pivotal role in these responses preserving or disrupting a combination of signaling pathways and cell-cell interactions. Taken together, our findings shed light into the complex role of the active interaction of astrocytes, neurons and microglia in the neurotoxicity of QUIN.


Assuntos
Astrócitos/efeitos dos fármacos , Citoesqueleto/efeitos dos fármacos , Agonistas de Aminoácidos Excitatórios/toxicidade , Microglia/efeitos dos fármacos , Ácido Quinolínico/toxicidade , Animais , Astrócitos/citologia , Astrócitos/metabolismo , Comunicação Celular/efeitos dos fármacos , Técnicas de Cocultura , Conexina 43/genética , Conexina 43/metabolismo , Corpo Estriado/citologia , Corpo Estriado/efeitos dos fármacos , Corpo Estriado/metabolismo , Citoesqueleto/metabolismo , Citoesqueleto/ultraestrutura , MAP Quinases Reguladas por Sinal Extracelular/genética , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Feminino , Fator 2 de Crescimento de Fibroblastos/genética , Fator 2 de Crescimento de Fibroblastos/metabolismo , Junções Comunicantes/efeitos dos fármacos , Junções Comunicantes/metabolismo , Junções Comunicantes/ultraestrutura , Regulação da Expressão Gênica , Sistema de Sinalização das MAP Quinases , Microglia/citologia , Microglia/metabolismo , Neurônios/citologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Oxirredução , Gravidez , Cultura Primária de Células , Ratos , Ratos Wistar
3.
Cell Biol Toxicol ; 33(2): 197-206, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-27744523

RESUMO

Activated hepatic stellate cells (HSC) are the major source of collagen I in liver fibrosis. Eugenia uniflora L. is a tree species that is widely distributed in South America. E. uniflora L. fruit-popularly known as pitanga-has been shown to exert beneficial properties. Autophagy contributes to the maintenance of cellular homeostasis and survival under stress situation, but it has also been suggested to be an alternative cell death pathway. Mitochondria play a pivotal role on signaling cell death. Mitophagy of damaged mitochondria is an important cell defense mechanism against organelle-mediated cell death signaling. We previously found that purple pitanga extract induced mitochondrial dysfunction, cell cycle arrest, and death by apoptosis and necrosis in GRX cells, a well-established activated HSC line. We evaluated the effects of 72-h treatment with crescent concentrations of purple pitanga extract (5 to 100 µg/mL) on triggering autophagy in GRX cells, as this is an important mechanism to cells under cytotoxic conditions. We found that all treated cells presented an increase in the mRNA expression of autophagy-related protein 7 (ATG7). Concomitantly, flow cytometry and ultrastructural analysis of treated cells revealed an increase of autophagosomes/autolysosomes that consequentially led to an increased mitophagy. As purple pitanga extract was previously found to be broadly cytotoxic to GRX cells, we postulated that autophagy contributes to this scenario, where cell death seems to be an inevitable fate. Altogether, the effectiveness on inducing activated HSC death can make purple pitanga extract a good candidate on treating liver fibrosis.


Assuntos
Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Eugenia/química , Células Estreladas do Fígado/patologia , Extratos Vegetais/farmacologia , Animais , Autofagossomos/efeitos dos fármacos , Autofagossomos/metabolismo , Autofagossomos/ultraestrutura , Linhagem Celular , Células Estreladas do Fígado/efeitos dos fármacos , Cirrose Hepática/tratamento farmacológico , Cirrose Hepática/patologia , Lisossomos/efeitos dos fármacos , Lisossomos/metabolismo , Camundongos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Fitoterapia , Extratos Vegetais/uso terapêutico
4.
Prostate ; 75(8): 783-97, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25619388

RESUMO

BACKGROUND: Prostate cancer is a leading cause of death among men due to the limited number of treatment strategies available for advanced disease. γ-oryzanol is a component of rice bran, rich in phytosterols, known for its antioxidant, anti-carcinogenic and endocrinological effects. It is known that γ-oryzanol may affect prostate cancer cells through the down regulation of the antioxidant genes and that phytosterols have anti-proliferative and apoptotic effects. There are evidences showing that some of the components of γ-oryzanol can modulate genes involved in the development and progression of prostate cancer, as caveolin-1 (Cav-1) and prostate specific androgen-regulated gene (PCGEM1). METHODS: To determine the effects of γ-oryzanol on prostate cancer cell survival we evaluated the cell viability and biomass by MTT and sulforhodamine B assays, respectively. Cell death, cell cycle and pERK1/2 activity were assessed by flow cytometry. The changes in gene expression involved in the survival and progression of prostate cancer cav-1 and PCGEM1 genes were evaluated by quantitative real time reverse transcriptase polymerase chain reaction (RT-PCR) and cav-1 protein by immunofluorescence followed by confocal microscopy analysis. RESULTS: We found that γ-oryzanol decreases cell viability and culture biomass by apoptosis and/or necrosis death in androgen unresponsive (PC3 and DU145) and responsive (LNCaP) cell lines, and signals through pERK1/2 in LNCaP and DU145 cells. γ-oryzanol also appears to block cell cycle progression at the G2/M in PC3 and LNCaP cells and at G0/G1 in DU145 cells. These effects were accompanied by a down regulation in the expression of the cav-1 in both androgen unresponsive cell lines and PCGEM1 gene in DU145 and LNCaP cells. CONCLUSION: In summary, we used biochemical and genetics approaches to demonstrate that γ-oryzanol show a promising adjuvant role in the treatment of prostate cancer.


Assuntos
Caveolina 1/antagonistas & inibidores , Caveolina 1/biossíntese , Regulação Neoplásica da Expressão Gênica , Fenilpropionatos/farmacologia , Neoplasias da Próstata/metabolismo , RNA Longo não Codificante/antagonistas & inibidores , RNA Longo não Codificante/biossíntese , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Humanos , Masculino , Fenilpropionatos/uso terapêutico , Neoplasias da Próstata/tratamento farmacológico
5.
Cell Biochem Funct ; 32(1): 16-23, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23475531

RESUMO

The presence of phenolic compounds in fruit- and vegetable-rich diets has attracted researchers' attention due to their health-promoting effects. The objective of this study was to evaluate the effects of purple pitanga (Eugenia uniflora L.) extract on cell proliferation, viability, mitochondrial membrane potential, cell death and cell cycle in murine activated hepatic stellate cells (GRX). Cell viability by 3-(4,5-dimethylthiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay was significantly decreased on cells treated with 50 and 100 µg ml(-1) of purple pitanga extract for 48 and 72 h, and the percentage of dead cell stained with 7-amino-actinomycin D was significantly higher in treated cells. The reduction of cell proliferation was dose dependent, and we also observed alterations on cell cycle progression. At all times studied, GRX cells treated with 50 and 100 µg ml(-1) of purple pitanga showed a significant reduction in cellular mitochondrial content as well as a decrease in mitochondrial membrane potential. Furthermore, our results indicated that purple pitanga extract induces early and late apoptosis/necrosis and necrotic death in GRX cells. This is the first report describing the antiproliferative, cytotoxic and apoptotic activity for E. uniflora fruits in hepatic stellate cells. The present study provides a foundation for the prevention and treatment of liver fibrosis, and more studies will be carried to elucidate this effect.


Assuntos
Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Citotoxinas/farmacologia , Células Estreladas do Fígado/efeitos dos fármacos , Extratos Vegetais/farmacologia , Syzygium/química , Animais , Apoptose/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Linhagem Celular , Células Estreladas do Fígado/citologia , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos , Schistosoma mansoni
6.
Aging (Albany NY) ; 13(2): 1686-1691, 2021 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-33471779

RESUMO

Severe therapy-resistant asthma (STRA) is closely associated with distinct clinical and inflammatory pheno-endotypes, which may contribute to the development of age-related comorbidities. Evidence has demonstrated a contribution of accelerated telomere shortening on the poor prognosis of respiratory diseases in adults. Eotaxin-1 (CCL11) is an important chemokine for eosinophilic recruitment and the progression of asthma. In the last years has also been proposed as an age-promoting factor. This study aimed to investigate the association of relative telomere length (rTL) and eotaxin-1 in asthmatic children. Children aged 8-14 years (n=267) were classified as healthy control (HC, n=126), mild asthma (MA, n=124) or severe therapy-resistant asthma (STRA, n=17). rTL was performed by qPCR from peripheral blood. Eotaxin-1 was quantified by ELISA from fresh-frozen plasma. STRA had shorter telomeres compared to HC (p=0.02) and MA (p=0.006). Eotaxin-1 levels were up-regulated in STRA [median; IQR25-75)] [(1,190 pg/mL; 108-2,510)] compared to MA [(638 pg/mL; 134-1,460)] (p=0.03) or HC [(627 pg/mL; 108-1,750)] (p<0.01). Additionally, shorter telomeres were inversely correlated with eotaxin-1 levels in STRA (r=-0.6, p=0.013). Our results suggest that short telomeres and up-regulated eotaxin-1, features of accelerated aging, could prematurely contribute to a senescent phenotype increasing the risk for early development of age-related diseases in asthma.


Assuntos
Envelhecimento/genética , Asma/genética , Encurtamento do Telômero/fisiologia , Adolescente , Envelhecimento/sangue , Asma/sangue , Estudos de Casos e Controles , Quimiocina CCL11/sangue , Criança , Feminino , Humanos , Masculino
7.
Int J Bipolar Disord ; 7(1): 13, 2019 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-31152269

RESUMO

BACKGROUND: Innate immune system dysfunction has been recognized as an important element in the pathophysiology of bipolar disorder (BD). We aimed to investigate whether there are differences in the response of macrophages derived from patients in the early stages and late stages of BD and healthy subjects. METHODS: Human monocytes purified from peripheral blood mononuclear cells (PBMCs) of patients with BD type I (n = 18)-further classified into early- and late stage BD patients according to their functioning- and from healthy individuals (n = 10) were differentiated into macrophages in vitro. Monocyte-derived macrophages (M) were exposed to IFNγ plus LPS-M(IFNγ + LPS)- or IL-4-M(IL-4)-to induce their polarization into the classical (also called M1) or alternative (also called M2) activation phenotypes, respectively; or either Mψ were not exposed to any stimuli characterizing the resting state (denominated M0). In vitro secretion of cytokines, such as IL-1ß, IL-6, IL-10, and TNF-α, was used as an index of macrophage activity. RESULTS: M(IFNγ + LPS) from late-stage BD patients produced less amount of IL-1ß, IL-6, and IL-10 when compared to early-stage BD patients and healthy controls. Following alternative activation, M(IL-4) derived from late-stage patients secreted less IL-6 compared to the other groups. TNFα was less secreted by all macrophage phenotypes derived from late-stage patients when compared to healthy controls only (p < 0.005). Mψ from late-stage patients exhibited lower production of IL-1ß and IL-10 compared to macrophages from healthy subjects and early-stage patients respectively. Interestingly, cytokines secretion from M(IFNγ + LPS), M(IL-4) and Mψ were similar between early-stage patients and healthy controls. CONCLUSION: Our results suggest a progressive dysfunction in the response of peripheral innate immune cells of BD patients in the late stages of the illness. This failure in the regulation of the immune system function may be implicated in the multisystemic progression of BD.

8.
Mol Neurobiol ; 55(2): 980-988, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28084592

RESUMO

In the current study, we verified the effects of maternal hypermethioninemia on the number of neurons, apoptosis, nerve growth factor, and brain-derived neurotrophic factor levels, energy metabolism parameters (succinate dehydrogenase, complex II, and cytochrome c oxidase), expression and immunocontent of Na+,K+-ATPase, edema formation, inflammatory markers (tumor necrosis factor-alpha and interleukin-6), and mitochondrial hydrogen peroxide levels in the encephalon from the offspring. Pregnant Wistar rats were divided into two groups: the first one received saline (control) and the second group received 2.68 µmol methionine/g body weight by subcutaneous injections twice a day during gestation (approximately 21 days). After parturition, pups were killed at the 21st day of life for removal of encephalon. Neuronal staining (anti-NeuN) revealed a reduction in number of neurons, which was associated to decreased nerve growth factor and brain-derived neurotrophic factor levels. Maternal hypermethioninemia also reduced succinate dehydrogenase and complex II activities and increased expression and immunocontent of Na+,K+-ATPase alpha subunits. These results indicate that maternal hypermethioninemia may be a predisposing factor for damage to the brain during the intrauterine life.


Assuntos
Erros Inatos do Metabolismo dos Aminoácidos/metabolismo , Encéfalo/metabolismo , Metabolismo Energético/fisiologia , Glicina N-Metiltransferase/deficiência , Fatores de Crescimento Neural/metabolismo , Neurônios/metabolismo , Efeitos Tardios da Exposição Pré-Natal/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismo , Erros Inatos do Metabolismo dos Aminoácidos/induzido quimicamente , Animais , Contagem de Células , Feminino , Glicina N-Metiltransferase/metabolismo , Metionina , Oxirredução , Gravidez , Ratos , Ratos Wistar
9.
Adv Clin Chem ; 80: 1-44, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28431638

RESUMO

This review discusses the role of triglycerides (TGs) in the normal cardiovascular system as well as in the development and clinical manifestation of cardiovascular diseases. Regulation of TGs at the enzymatic and genetic level, in addition to their possible relevance as preclinical and clinical biomarkers, is discussed, culminating with a description of available and emerging treatments. Due to the high complexity of the subject and the vast amount of material in the literature, the objective of this review was not to exhaust the subject, but rather to compile the information to facilitate and improve the understanding of those interested in this topic. The main publications on the topic were sought out, especially those from the last 5 years. The data in the literature still give reason to believe that there is room for doubt regarding the use of TG as disease biomarkers; however, there is increasing evidence for the role of hypertriglyceridemia on the atherosclerotic inflammatory process, cardiovascular outcomes, and mortality.


Assuntos
Doenças Cardiovasculares , Fenômenos Fisiológicos Cardiovasculares , Triglicerídeos/metabolismo , Regulação da Expressão Gênica , Humanos , Hipertrigliceridemia/tratamento farmacológico , Hipertrigliceridemia/etiologia , Hipolipemiantes
10.
Braz J Psychiatry ; 38(4): 281-286, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27798713

RESUMO

OBJECTIVE:: Bipolar disorder (BD) has been associated with increased rates of age-related diseases, such as type II diabetes, metabolic syndrome, osteoporosis, and cardiovascular disorders. Several biological findings have been associated with age-related disorders, including increased oxidative stress, inflammation, and telomere shortening. The objective of this study was to compare telomere length among participants with BD at early and late stages and age- and gender-matched healthy controls. METHODS:: Twenty-six euthymic subjects with BD and 34 healthy controls were recruited. Genomic DNA was extracted from peripheral blood and mean telomere length was measured using real-time quantitative polymerase chain reaction. RESULTS:: Telomere length was significantly shorter in both the early and late subgroups of BD subjects when compared to the respective controls (p = 0.002 and p = 0.005, respectively). The sample size prevented additional subgroup analyses, including potential effects of medication, smoking status, and lifestyle. CONCLUSION:: This study is concordant with previous evidence of telomere shortening in BD, in both early and late stages of the disorder, and supports the notion of accelerated aging in BD.


Assuntos
Envelhecimento/genética , Transtorno Bipolar/genética , Encurtamento do Telômero/genética , Telômero/genética , Adulto , Idoso , Transtorno Bipolar/fisiopatologia , Estudos de Casos e Controles , Senescência Celular/genética , DNA/sangue , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Reação em Cadeia da Polimerase em Tempo Real
11.
Mol Neurobiol ; 53(4): 2384-96, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26001762

RESUMO

The understanding of the consequences of chronic treatment with methylphenidate is very important since this psychostimulant is extensively prescribed to preschool age children, and little is known about the mechanisms underlying the persistent changes in behavior and neuronal function related with the use of methylphenidate. In this study, we initially investigate the effect of early chronic treatment with methylphenidate on amino acids profile in cerebrospinal fluid and prefrontal cortex of juvenile rats, as well as on glutamatergic homeostasis, Na(+),K(+)-ATPase function, and balance redox in prefrontal cortex of rats. Wistar rats at early age received intraperitoneal injections of methylphenidate (2.0 mg/kg) or an equivalent volume of 0.9% saline solution (controls), once a day, from the 15th to the 45th day of age. Twenty-four hours after the last injection, the animals were decapitated and the cerebrospinal fluid and prefrontal cortex were obtained. Results showed that methylphenidate altered amino acid profile in cerebrospinal fluid, increasing the levels of glutamate. Glutamate uptake was decreased by methylphenidate administration, but GLAST and GLT-1 were not altered by this treatment. In addition, the astrocyte marker GFAP was not altered by MPH. The activity and immunocontent of catalytic subunits (α1, α2, and α3) of Na(+),K(+)-ATPase were decreased in prefrontal cortex of rats subjected to methylphenidate treatment, as well as changes in α1 and α2 gene expression of catalytic α subunits of Na(+),K(+)-ATPase were also observed. CAT activity was increased and SOD/CAT ratio and sulfhydryl content were decreased in rat prefrontal cortex. Taken together, our results suggest that chronic treatment with methylphenidate at early age induces excitotoxicity, at least in part, due to inhibition of glutamate uptake probably caused by disturbances in the Na(+),K(+)-ATPase function and/or in protein damage observed in the prefrontal cortex.


Assuntos
Ácido Glutâmico/líquido cefalorraquidiano , Homeostase/efeitos dos fármacos , Metilfenidato/farmacologia , Córtex Pré-Frontal/metabolismo , Sistema X-AG de Transporte de Aminoácidos/metabolismo , Animais , Antígenos Nucleares/metabolismo , Domínio Catalítico , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Proteína Glial Fibrilar Ácida/metabolismo , Imuno-Histoquímica , Masculino , Modelos Biológicos , Proteínas do Tecido Nervoso/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Córtex Pré-Frontal/efeitos dos fármacos , Córtex Pré-Frontal/patologia , Ratos Wistar , ATPase Trocadora de Sódio-Potássio/genética , ATPase Trocadora de Sódio-Potássio/metabolismo
12.
Sci Rep ; 5: 13351, 2015 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-26302899

RESUMO

Growing evidence defines macrophages (Mφ) as plastic cells with wide-ranging states of activation and expression of different markers that are time and location dependent. Distinct from the simple M1/M2 dichotomy initially proposed, extensive diversity of macrophage phenotypes have been extensively demonstrated as characteristic features of monocyte-macrophage differentiation, highlighting the difficulty of defining complex profiles by a limited number of genes. Since the description of macrophage activation is currently contentious and confusing, the generation of a simple and reliable framework to categorize major Mφ phenotypes in the context of complex clinical conditions would be extremely relevant to unravel different roles played by these cells in pathophysiological scenarios. In the current study, we integrated transcriptome data using bioinformatics tools to generate two macrophage molecular signatures. We validated our signatures in in vitro experiments and in clinical samples. More importantly, we were able to attribute prognostic and predictive values to components of our signatures. Our study provides a framework to guide the interrogation of macrophage phenotypes in the context of health and disease. The approach described here could be used to propose new biomarkers for diagnosis in diverse clinical settings including dengue infections, asthma and sepsis resolution.


Assuntos
Citocinas/imunologia , Perfilação da Expressão Gênica/métodos , Ativação de Macrófagos/imunologia , Fatores Ativadores de Macrófagos/imunologia , Macrófagos/classificação , Macrófagos/imunologia , Células Cultivadas , Estudos de Viabilidade , Humanos , Macrófagos/citologia , Integração de Sistemas , Transcriptoma
14.
Braz. J. Psychiatry (São Paulo, 1999, Impr.) ; Braz. J. Psychiatry (São Paulo, 1999, Impr.);38(4): 281-286, Oct.-Dec. 2016. tab, graf
Artigo em Inglês | LILACS | ID: lil-798093

RESUMO

Objective: Bipolar disorder (BD) has been associated with increased rates of age-related diseases, such as type II diabetes, metabolic syndrome, osteoporosis, and cardiovascular disorders. Several biological findings have been associated with age-related disorders, including increased oxidative stress, inflammation, and telomere shortening. The objective of this study was to compare telomere length among participants with BD at early and late stages and age- and gender-matched healthy controls. Methods: Twenty-six euthymic subjects with BD and 34 healthy controls were recruited. Genomic DNA was extracted from peripheral blood and mean telomere length was measured using real-time quantitative polymerase chain reaction. Results: Telomere length was significantly shorter in both the early and late subgroups of BD subjects when compared to the respective controls (p = 0.002 and p = 0.005, respectively). The sample size prevented additional subgroup analyses, including potential effects of medication, smoking status, and lifestyle. Conclusion: This study is concordant with previous evidence of telomere shortening in BD, in both early and late stages of the disorder, and supports the notion of accelerated aging in BD.


Assuntos
Humanos , Masculino , Feminino , Adulto , Pessoa de Meia-Idade , Idoso , Transtorno Bipolar/genética , Envelhecimento/genética , Telômero/genética , Encurtamento do Telômero/genética , Transtorno Bipolar/fisiopatologia , DNA/sangue , Estudos de Casos e Controles , Senescência Celular/genética , Reação em Cadeia da Polimerase em Tempo Real
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA