Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Anim Cells Syst (Seoul) ; 28(1): 261-271, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38741949

RESUMO

The ring finger protein 113A (RNF113A) serves as an E3 ubiquitin ligase and a subunit of the spliceosome. Mutations in the RNF113A gene are associated with X-linked trichothiodystrophy (TTD). However, the cellular roles of RNF113A remain largely unknown. In this study, we performed transcriptome profiling of RNF113A knockout (KO) HeLa cells using RNA sequencing and revealed the upregulation of NRF2 pathway-associated genes. Further analysis confirmed that the KO of RNF113A promotes nuclear localization of the NRF2 protein and elevates the mRNA levels of NRF2 target genes. RNF113A KO cells showed high levels of intracellular reactive oxygen species (ROS) and decreased resistance to cell death following H2O2 treatment. Additionally, RNF113A KO cells more sensitively formed stress granules (SGs) under arsenite-induced oxidative stress. Moreover, RNF113A KO cells exhibited a decrease in glutathione levels, which could be attributed to a reduction in GLUT1 expression levels, leading to decreased glucose uptake reactions and lower intracellular glucose levels. These alterations potentially caused a reduction in ROS scavenging activity. Taken together, our findings suggest that the loss of RNF113A promotes oxidative stress-mediated activation of the NRF2 pathway, providing novel insights into RNF113A-associated human diseases.

2.
Adv Sci (Weinh) ; 11(29): e2308539, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38790135

RESUMO

The orphan nuclear receptor NR2E3 (Nuclear receptor subfamily 2 group E, Member 3) is an epigenetic player that modulates chromatin accessibility to activate p53 during liver injury. Nonetheless, a precise tumor suppressive and epigenetic role of NR2E3 in hepatocellular carcinoma (HCC) development remains unclear. HCC patients expressing low NR2E3 exhibit unfavorable clinical outcomes, aligning with heightened activation of the Wnt/ß-catenin signaling pathway. The murine HCC models utilizing NR2E3 knockout mice consistently exhibits accelerated liver tumor formation accompanied by enhanced activation of Wnt/ß-catenin signaling pathway and inactivation of p53 signaling. At cellular level, the loss of NR2E3 increases the acquisition of aggressive cancer cell phenotype and tumorigenicity and upregulates key genes in the WNT/ß-catenin pathway with increased chromatin accessibility. This event is mediated through increased formation of active transcription complex involving Sp1, ß-catenin, and p300, a histone acetyltransferase, on the promoters of target genes. These findings demonstrate that the loss of NR2E3 activates Wnt/ß-catenin signaling at cellular and organism levels and this dysregulation is associated with aggressive HCC development and poor clinical outcomes. In summary, NR2E3 is a novel tumor suppressor with a significant prognostic value, maintaining epigenetic homeostasis to suppress the Wnt/ß-catenin signaling pathway that promotes HCC development.


Assuntos
Carcinoma Hepatocelular , Epigênese Genética , Neoplasias Hepáticas , Camundongos Knockout , Via de Sinalização Wnt , beta Catenina , Animais , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Via de Sinalização Wnt/genética , Camundongos , Epigênese Genética/genética , beta Catenina/metabolismo , beta Catenina/genética , Humanos , Modelos Animais de Doenças , Fator de Transcrição Sp1/metabolismo , Fator de Transcrição Sp1/genética , Regulação Neoplásica da Expressão Gênica/genética , Linhagem Celular Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA