Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Small ; 17(47): e2104698, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34632705

RESUMO

Fine control of ultramicroporosity (<7 Å) in carbon molecular sieve (CMS) membranes is highly desirable for challenging gas separation processes. Here, a versatile approach is proposed to fabricate hybrid CMS (HCMS) membranes with unique textural properties as well as tunable ultramicroporosity. The HCMS membranes are formed by pyrolysis of a polymer nanocomposite precursor containing metal-organic frameworks (MOFs) as a carbonizable nanoporous filler. The MOF-derived carbonaceous phase displays good compatibility with the polymer-derived carbon matrix due to the homogeneity of the two carbon phases, substantially enhancing the mechanical robustness of the resultant HCMS membranes. Detailed structural analyses reveal that the in situ pyrolysis of embedded MOFs induces more densified and interconnected carbon structures in HCMS membranes compared to those in conventional CMS membranes, leading to bimodal and narrow pore size distributions in the ultramicroporous region. Eventually, the HCMS membranes exhibit far superior gas separation performances with a strong size-sieving ability than the conventional polymers and CMS membranes, especially for closely sized gas pairs (Δd < 0.5 Å) including CO2 /CH4 and C3 H6 /C3 H8 separations. More importantly, the developed HCMS material is successfully prepared into a thin-film composite (TFC) membrane (≈1 µm), demonstrating its practical feasibility for use in industrial mixed-gas operation conditions.

2.
Nano Lett ; 20(7): 4754-4760, 2020 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-32469531

RESUMO

Nanotube membranes could show significantly enhanced permeance and selectivity for gas separations. Up until now, studies have primarily focused on applying carbon nanotubes to membranes to achieve ultrafast mass transport. Here, we report the first preparation of silicon nanotube (SiNT) membranes via a template-assisted method and investigate the gas transport behavior through these SiNT membranes using single- and mixed-gas permeation experiments. The SiNT membranes consist of conical cylinder-shaped nanotubes vertically aligned on a porous silicon wafer substrate. The diameter of the SiNT pore mouths are 10 and 30 nm, and the average inner diameter of the tube body is 80 nm. Interestingly, among the gases tested, we found an unprecedentedly low CO2 permeance through the SiNT membranes in single-gas permeation experiments, exceeding the theoretical Knudsen selectivity toward small gases/CO2 separation. This behavior was caused by the reduction of CO2 permeability through the blocking effect of CO2 adsorbed in the narrow pore channels of the SiNT cone regions, indicating that CO2 molecules have a high affinity to the native silicon oxide layer (∼2 nm) that is formed on the inner walls of SiNTs. SiNT membranes also exhibited enhanced gas permeance and water flux as compared to classic theoretical models and, as such, may prove useful as a new type of nanotube material for use in membrane applications.

3.
Angew Chem Int Ed Engl ; 60(23): 13081-13088, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-33655622

RESUMO

Highly permselective and durable membrane materials have been sought for energy-efficient C3 H6 /C3 H8 separation. Mixed-matrix membranes (MMMs) comprising a polymer matrix and metal-organic frameworks (MOFs) are promising candidates for this application; however, rational matching of filler-matrix is challenging and their separation performances need to be further improved. Here, we propose a novel strategy of "defect engineering" in MOFs as an additional degree of freedom to design advanced MMMs. MMMs incorporated with defect-engineered MOFs exhibit exceptionally high C3 H6 permeability and maintained C3 H6 /C3 H8 selectivity, especially with enhanced stability under industrial mixed-gas conditions. The gas transport, sorption, and material characterizations reveal that the defect sites in MOFs provide the resulting MMMs with not only ultrafast diffusion pathways but also favorable C3 H6 sorption by forming complexation with unsaturated open metal sites, confirmed by in situ FT-IR studies. Most importantly, the concept is also valid for different polymer matrices and gas pairs, demonstrating its versatile potential in other fields.

4.
Small ; 15(44): e1903705, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31523914

RESUMO

Hexagonal boron nitride (hBN) has great potential as a promising gas barrier layer in proton exchange membrane fuel cells (PEMFCs) as it shows high proton conductivity as well as excellent gas-blocking capability. However, structural defects and mechanical damage during the transfer of the hBN layer and membrane swelling have limited the application of hBN sheets to PEMFCs. Here, an ultrathin gas barrier layer is successfully fabricated on a proton exchange membrane via reconstruction of mechanically exfoliated hBN nanoflakes using a direct spin-coating process. The hBN-coated layer effectively suppresses the gas crossover and inhibits the formation of reactive oxygen radicals in the electrodes without reducing the proton conductivity of the membrane. It is also demonstrated that the structural advantages of hBN-coated gas barrier layers promise high performance of a unit cell even after a open-circuit voltage (OCV) hold test for 100 h. Furthermore, through in-depth postmortem analyses, a time-dependent degradation mechanism of membrane electrode assembly under the OCV condition is rationally proposed.

5.
Small ; 14(34): e1801456, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30062815

RESUMO

As soluble catalysts, redox-mediators (RMs) endow mobility to catalysts for unconstrained access to tethered solid discharge products, lowering the energy barrier for Li2 O2 formation/decomposition; however, this desired mobility is accompanied by the undesirable side effect of RM migration to the Li metal anode. The reaction between RMs and Li metal degrades both the Li metal and the RMs, leading to cell deterioration within a few cycles. To extend the cycle life of redox-mediated Li-O2 batteries, herein graphene oxide (GO) membranes are reported as RM-blocking separators. It is revealed that the size of GO nanochannels is narrow enough to reject 5,10-dihydro-5,10-dimethylphenazine (DMPZ) while selectively allowing the transport of smaller Li+ ions. The negative surface charges of GO further repel negative ions via Donnan exclusion, greatly improving the lithium ion transference number. The Li-O2 cells with GO membranes efficiently harness the redox-mediation activity of DMPZ for improved performance, achieving energy efficiency of above 80% for more than 25 cycles, and 90% for 78 cycles when the capacity limits were 0.75 and 0.5 mAh cm-2 , respectively. Considering the facile preparation of GO membranes, RM-sieving GO membranes can be cost-effective and processable functional separators in Li-O2 batteries.

6.
Chemistry ; 22(45): 15980-15990, 2016 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-27539399

RESUMO

This Concept examines strategies to design advanced polymers with high CO2 permeability and high CO2 /N2 selectivity, which are the key to the success of membrane technology for CO2 capture from fossil fuel-fired power plants. Specifically, polymers with enhanced CO2 solubility and thus CO2 /N2 selectivity are designed by incorporating CO2 -philic groups in polymers such as poly(ethylene oxide)-containing polymers and poly(ionic liquids); polymers with enhanced CO2 diffusivity and thus CO2 permeability are designed with contorted rigid polymer chains to obtain high free volume, such as polymers with intrinsic microporosity and thermally rearranged polymers. The underlying rationales for materials design are discussed and polymers with promising CO2 /N2 separation properties for CO2 capture from flue gas are highlighted.

7.
Philos Trans A Math Phys Eng Sci ; 374(2060)2016 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-26712638

RESUMO

Recently, graphene-based membranes have been extensively studied, represented by two distinct research directions: (i) creating pores in graphene basal plane and (ii) engineering nanochannels in graphene layers. Most simulation results predict that porous graphene membranes can be much more selective and permeable than current existing membranes, also evidenced by some experimental results for gas separation and desalination. In addition, graphene oxide has been widely investigated in layered membranes with two-dimensional nanochannels, showing very intriguing separation properties. This review will cover state-of-the-art of graphene-based membranes, and also provide a material guideline on future research directions suitable for practical membrane applications.

8.
Small ; 10(13): 2653-60, 2014 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-24668882

RESUMO

As water molecules permeate ultrafast through carbon nanotubes (CNTs), many studies have prepared CNTs-based membranes for water purification as well as desalination, particularly focusing on high flux membranes. Among them, vertically aligned CNTs membranes with ultrahigh water flux have been successfully demonstrated for fundamental studies, but they lack scalability for bulk production and sufficiently high salt rejection. CNTs embedded in polymeric desalination membranes, i.e., polyamide thin-film composite (TFC) membranes, can improve water flux without any loss of salt rejection. This improved flux is achieved by enhancing the dispersion properties of CNTs in diamine aqueous solution and also by using cap-opened CNTs. Hydrophilic CNTs were prepared by wrapping CNT walls via bio-inspired surface modification using dopamine solution. Cap-opening of pristine CNTs is performed by using a thermo-oxidative process. As a result, hydrophilic, cap-opened CNTs-embedded polyamide TFC membranes are successfully prepared, which show much higher water flux than pristine polyamide TFC membrane. On the other hand, less-disperse, less cap-opened CNTs-embedded TFC membranes do not show any flux improvement and rather lead to lower salt rejection properties.

9.
ACS Appl Mater Interfaces ; 16(20): 26743-26756, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38733403

RESUMO

In this work, we explore the use of ring-opening metathesis polymerization (ROMP) facilitated by a second-generation Grubbs catalyst (G2) for the development of advanced polymer membranes aimed at CO2 separation. By employing a novel copolymer blend incorporating 4,4'-oxidianiline (ODA), 1,6-hexanediamine (HDA), 1-adamantylamine (AA), and 3,6,9-trioxaundecylamine (TA), along with a CO2-selective poly(ethylene glycol)/poly(propylene glycol) copolymer (Jeffamine2003) and polydimethylsiloxane (PDMS) units, we have synthesized membranes under ambient conditions with exceptional CO2 separation capabilities. The strategic inclusion of PDMS, up to a 20% composition within the PEG/PPG matrix, has resulted in copolymer membranes that not only surpass the 2008 upper limit for CO2/N2 separation but also meet the commercial targets for CO2/H2 separation. Comprehensive analysis reveals that these membranes adhere to the mixing rule and exhibit percolation behavior across the entire range of compositions (0-100%), maintaining robust antiplasticization performance even under pressures up to 20 atm. Our findings underscore the potential of ROMP in creating precisely engineered membranes for efficient CO2 separation, paving the way for their application in large-scale environmental and industrial processes.

10.
Chemosphere ; 324: 138334, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36893864

RESUMO

Fluoride, a naturally occurring chemical element, is largely insoluble in soils. More than 90% of the fluoride in soil is bound to soil particles and is unable to be dissolved. As part of the soil, fluoride is predominantly located in the colloid or clay fraction of the soil, and the movement of fluoride is strongly affected by the sorption capacity of the soil, which is affected by pH, the type of soil sorbent present, and the salinity. The Canadian Council of Ministers of the Environment soil quality guideline for fluoride in soils under a residential/parkland land use scenario is 400 mg/kg. In this review, we focus on fluoride contamination in soil and subsurface environments, and the various sources of fluorides are discussed in detail. The average fluoride concentration in soil in different countries and their regulations for soil and water are comprehensively reviewed. In this article, the latest advances in defluoridation methods are highlighted and the importance of further research addressing efficient and cost-effective methods to remediate fluoride contamination in soil is critically discussed. Methods used to mitigate fluoride risks by removing fluoride from the soil are presented. We strongly recommend that regulators and soil chemists in all countries explore opportunities to improve defluoridation methods and consider adopting more stringent regulations for fluoride in soil depending on geologic conditions.


Assuntos
Fluoretos , Solo , Fluoretos/análise , Canadá , Argila , Água
11.
Nat Commun ; 14(1): 8330, 2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38097615

RESUMO

Integrating different modification strategies into a single step to achieve the desired properties of metal-organic frameworks (MOFs) has been very synthetically challenging, especially in developing advanced MOF/polymer mixed matrix membranes (MMMs). Herein, we report a polymer-MOF (polyMOF) system constructed from a carboxylated polymer with intrinsic microporosity (cPIM-1) ligand. This intrinsically microporous ligand could coordinate with metals, leading to ~100 nm-sized polyMOF nanoparticles. Compared to control MOFs, these polyMOFs exhibit enhanced ultramicroporosity for efficient molecular sieving, and they have better dispersion properties in casting solutions to prepare MMMs. Ultimately, integrating coordination chemistries through the cPIM-1 and polymer-based functionality into porous materials results in polyMOF/PIM-1 MMMs that display excellent CO2 separation performance (surpassing the CO2/N2 and CO2/CH4 upper bounds). In addition to exploring the physicochemical and transport properties of this polyMOF system, scalability has been demonstrated by converting the developed MMM material into large-area (400 cm2) thin-film nanocomposite (TFN) membranes.

12.
Nanoscale ; 15(17): 7710-7714, 2023 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-37051888

RESUMO

Heterostructures of metal halide perovskites and TiOx are efficient photocatalytic materials owing to the combination of the advantages of each compound, specifically the high absorption coefficients and long charge-carrier lifetimes of perovskites, and efficient photocatalytic activity of TiOx. However, chemical reduction of CO2 using PNC/TiOx heterostructures without organic solvents has not been reported yet. Here, we report the first solvent-free reduction of CO2 using amorphous TiOx with embedded colloidal perovskite nanocrystals (PNCs). The combination was obtained by carrying out hydrolysis of titanium butoxide (TBOT) on the PNC surface without high-temperature calcination. We proposed a mechanism involving photoexcited electrons being transferred from PNCs to TBOT, enabling photocatalytic reactions using TiOx under visible-light excitation. We demonstrated efficient visible-light-driven photocatalytic reactions at PNC/TiOx interfaces, specifically with a CO production rate of 30.43 µmol g-1 h-1 and accelerated degradation of organic pollutants under natural sunlight. Our work has provided a simple path toward both efficient CO2 reduction and photocatalytic degradation of organic dyes.

13.
Adv Mater ; 35(26): e2300091, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36967600

RESUMO

Proton-exchange-membrane water electrolysis (PEMWE) requires an efficient and durable bifunctional electrocatalyst for the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). Herein, Ir-based electrocatalyst is designed using the high entropy alloy (HEA) platform of ZnNiCoIrX with two elements (X: Fe and Mn). A facile dealloying in the vacuum system enables the construction of a nanoporous structure with high crystallinity using Zn as a sacrificial element. Especially, Mn incorporation into HEAs tailors the electronic structure of the Ir site, resulting in the d-band center being far away from the Fermi level. Downshifting of the d-band center weakens the adsorption energy with reaction intermediates, which is beneficial for catalytic reactions. Despite low Ir content, ZnNiCoIrMn delivers only 50 mV overpotential for HER at -50 mA cm-2 and 237 mV overpotential for the OER at 10 mA cm-2 . Furthermore, ZnNiCoIrMn shows almost constant voltage for the HER and OER for 100 h and a high stability number of 3.4 × 105 nhydrogen nIr -1 and 2.4 × 105 noxygen nIr -1 , demonstrating the exceptional durability of the HEA platform. The compositional engineering of ZnNiCoIrMn limits the diffusion of elements by high entropy effects and simultaneously tailors the electronic structure of active Ir sites, resulting in the modified cohesive and adsorption energies, all of which can suppress the dissolution of elements.

14.
J Hazard Mater ; 452: 131200, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-36958158

RESUMO

The preeminence of sulfonamide drug resistance genes in food waste (FW) and the increased utilization of high-strength organic FW in anaerobic digestion (AD) to enhance methane production have raised severe public health concerns in wastewater treatment plants worldwide. In this regard, the dissemination patterns of different sulfonamide resistance genes (sul1 and sul2) and their impact on the digester core microbiota during AD of FW leachate (FWL) were evaluated. The presence of various sulfonamide antibiotics (SAs) in FWL digesters improved the final methane yield by 37 % during AD compared with FWL digesters without SAs. Microbial population shifts towards hydrolytic, acidogenic, and acetogenic bacteria in the phyla Actinobacteriota, Bacteroidota, Chloroflexi, Firmicutes, Proteobacteria, and Synergistota occurred due to SA induced substrate digestion and absorption through active transport; butanoate, propanoate, and pyruvate metabolism; glycolysis; gluconeogenesis; the citrate cycle; and pentose phosphate pathway. The initial dominance of Methanosaeta (89-96 %) declined to 47-53 % as AD progressed and shifted towards Methanosarcina (40 %) in digesters with the highest SA concentrations at the end of AD. Dissemination of sul1 depended on class 1 integron gene (intl1)-based horizontal gene transfer to pathogenic members of Chloroflexi, Firmicutes, and Patescibacteria, whereas sul2 was transmitted to Synergistota independent of intl1. Low susceptibility and ability to utilize SAs during methanogenesis shielded methanogenic archaea against selection pressure, thus preventing them from interacting with sul or intl1 genes, thereby minimizing the risk of antibiotic resistance development. The observed emergence of cationic antimicrobial peptide, vancomycin, and ß-lactam resistance in the core microbiota during AD of FWL in the presence of SAs suggests that multidrug resistance caused by bacterial transformation could lead to an increase in the environmental resistome through wastewater sludge treatment.


Assuntos
Chloroflexi , Microbiota , Eliminação de Resíduos , Anaerobiose , Alimentos , Microbiota/genética , Esgotos/microbiologia , Bactérias/metabolismo , Sulfanilamida , Antibacterianos/metabolismo , Firmicutes , Metano/metabolismo , Reatores Biológicos
15.
Nat Mater ; 10(5): 372-5, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21460822

RESUMO

Microporous organic polymers (MOPs) are of potential significance for gas storage, gas separation and low-dielectric applications. Among many approaches for obtaining such materials, solution-processable MOPs derived from rigid and contorted macromolecular structures are promising because of their excellent mass transport and mass exchange capability. Here we show a class of amorphous MOP, prepared by [2+3] cycloaddition modification of a polymer containing an aromatic nitrile group with an azide compound, showing super-permeable characteristics and outstanding CO(2) separation performance, even under polymer plasticization conditions such as CO(2)/light gas mixtures. This unprecedented result arises from the introduction of tetrazole groups into highly microporous polymeric frameworks, leading to more favourable CO(2) sorption with superior affinity in gas mixtures, and selective CO(2) transport by presorbed CO(2) molecules that limit access by other light gas molecules. This strategy provides a direction in the design of MOP membrane materials for economic CO(2) capture processes.

16.
Membranes (Basel) ; 12(3)2022 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-35323731

RESUMO

Polyimide membranes have been widely investigated in gas separation applications due to their high separation abilities, excellent processability, relatively low cost, and stabilities. Unfortunately, it is extremely challenging to simultaneously achieve both improved gas permeability and selectivity due to the trade-off relationship in common polymer membranes. Diamine modification is a simple strategy to tune the separation performance of polyimide membranes, but an excessive loss in permeability is also generally observed. In the present work, we reported the effects of diamine type (i.e., non-fluorinated and fluorinated) on the physicochemical properties and the corresponding separation performance of a modified membrane using a commercial Matrimid® 5218 polyimide. Detailed spectroscopic, thermal, and surface analyses reveal that the bulky fluorine groups are responsible for the balanced chain packing modes in the resulting Matrimid membranes compared to the non-fluorinated diamines. Consequently, the modified Matrimid membranes using fluorinated diamines exhibit both higher gas permeability and selectivity than those of pristine Matrimid, making them especially effective for improving the separation performance towards H2/CH4 and CO2/CH4 pairs. The results indicate that the use of fluorinated modifiers may offer new opportunities to tune the gas transport properties of polyimide membranes.

17.
Macromol Rapid Commun ; 32(7): 579-86, 2011 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-21438056

RESUMO

This paper reports a new polyimide design with high internal free volume elements for fast mass transport simultaneously with high selectivity. Here, we show that the polymer design using a three-dimensional rigid molecular structure having internal void space can lead to the formation of high fractional free volume with proper cavity size to separate small gas molecules with high selectivities as high permeabilities. These findings could strongly impact emerging gas separation applications using polymeric membranes such as natural gas purification and biogas purification to get clean energy resources.


Assuntos
Imidas/química , Resinas Sintéticas/química , Gases
18.
ACS Appl Mater Interfaces ; 13(33): 39584-39594, 2021 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-34383478

RESUMO

High-density SnOx and SiOx thin films were deposited via atomic layer deposition (ALD) at low temperatures (100 °C) using tetrakis(dimethylamino)tin(IV) (TDMASn) and di-isopropylaminosilane (DIPAS) as precursors and hydrogen peroxide (H2O2) and O2 plasma as reactants, respectively. The thin-film encapsulation (TFE) properties of SnOx and SiOx were demonstrated with thickness dependence measurements of the water vapor transmission rate (WVTR) evaluated at 50 °C and 90% relative humidity, and different TFE performance tendencies were observed between thermal and plasma ALD SnOx. The film density, crystallinity, and pinholes formed in the SnOx film appeared to be closely related to the diffusion barrier properties of the film. Based on the above results, a nanolaminate (NL) structure consisting of SiOx and SnOx deposited using plasma-enhanced ALD was measured using WVTR (H2O molecule diffusion) at 2.43 × 10-5 g/m2 day with a 10/10 nm NL structure and time-lag gas permeation measurement (H2 gas diffusion) for applications as passivation layers in various electronic devices.

19.
Water Sci Technol ; 61(3): 619-24, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20150697

RESUMO

The water and salt transport properties of chlorine tolerant disulfonated poly(arylene ether sulfone) (BPS) copolymers have been characterized. Cast BPS membranes of both salt form and acid form with sulfonation levels from 20% to 40% were investigated. Water permeability of BPS films increases more than one order of magnitude as sulfonation level increases from 20% to 40%, while the salt permeability of the corresponding membranes increases two orders of magnitude. Moderate salt rejection (98.2%) was achieved by a BPS salt form membrane with a sulfonation level of 20%.


Assuntos
Membranas Artificiais , Polímeros , Cloro/farmacologia , Éteres , Concentração de Íons de Hidrogênio , Nylons , Osmose , Permeabilidade , Cloreto de Sódio/isolamento & purificação , Sulfonas , Termodinâmica , Água
20.
Membranes (Basel) ; 10(8)2020 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-32824239

RESUMO

In this work, the behavior of new GO-based mixed matrix membranes was tested in view of their use as CO2-selective membrane in post combustion carbon capture applications. In particular, the new materials were obtained by mixing of Pebax® 2533 copolymer with different types of graphene oxide (GO). Pebax® 2533 has indeed lower selectivity, but higher permeability than Pebax® 1657, which is more commonly used for membranes, and it could therefore benefit from the addition of GO, which is endowed with very high selectivity of CO2 with respect to nitrogen. The mixed matrix membranes were obtained by adding different amounts of GO, from 0.02 to 1% by weight, to the commercial block copolymers. Porous graphene oxide (PGO) and GO functionalized with polyetheramine (PEAGO) were also considered in composites produced with similar procedure, with a loading of 0.02%wt. The obtained films were then characterized by using SEM, DSC, XPS analysis and permeability experiments. In particular, permeation tests with pure CO2 and N2 at 35°C and 1 bar of upstream pressure were conducted for the different materials to evaluate their separation performance. It has been discovered that adding these GO-based nanofillers to Pebax® 2533 matrix does not improve the ideal selectivity of the material, but it allows to increase CO2 permeability when a low filler content, not higher than 0.02 wt%, is considered. Among the different types of GO, then, porous GO seems the most promising as it shows CO2 permeability in the order of 400 barrer (with an increase of about 10% with respect to the unloaded block copolymer), obtained without reducing the CO2/N2 selectivity of the materials, which remained in the order of 25.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA