Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Anal Chem ; 94(38): 12971-12980, 2022 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-36098546

RESUMO

Ru-based catalysis results in highly unsaturated fatty acid (HUFA) ethyl esters (EE) deuterated to various extents. The products carry 2H (D) mainly at their bis-allylic positions, where they are resistant to autoxidation compared to natural HUFA and are promising as neurological and retinal drugs. We characterized the extent of deuteration at each allylic position of docosa-4,7,10,13,16,19-hexaenoic acid deuterated to completion at bis-allylic and allylic positions (D-DHA) by two-dimensional (2D) and high-field (600 and 950 MHz) NMR. In separate experiments, the kinetics of docosahexaenoic acid (DHA) EE deuteration was evaluated using Paternò-Büchi (PB) reaction tandem mass spectrometry (MS/MS) analysis, enabling deuteration to be quantitatively characterized for isotopologues (D0-D14 DHA) at each internal allylic position. NMR analysis shows that the net deuteration of the isotopologue mixture is about 94% at the bis-allylic positions, and less than 1% remained as the protiated -CH2-. MS analysis shows that deuteration kinetics follow an increasing curve at bis-allylic positions with higher rate for internal bis-allylic positions. Percent D of bis-allylic positions increases linearly from D1 to D9 in which all internal bis-allylic positions (C9, C12, C15) deuterate uniformly and more rapidly than external bis-allylic positions (C6, C18). The mono-allylic positions near the methyl end (C21) show a steep increase of D only after the D10 isotopologue has been deuterated to >90%, while the mono-allylic position near the carboxyl position, C3, deuterates last and least. These data establish detailed methods for the characterization of Ru-catalyzed deuteration of HUFA as well as the phenomenological reaction kinetics as net product is formed.


Assuntos
Ácidos Docosa-Hexaenoicos , Ácidos Graxos , Catálise , Ácidos Graxos Insaturados , Imidazóis , Sulfonamidas , Espectrometria de Massas em Tandem , Tiofenos
2.
Exp Eye Res ; 222: 109193, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35870486

RESUMO

Docosahexaenoic acid (DHA; 22:6n-3) rich photoreceptors function in a highly oxidizing microenvironment. Lipid peroxidation and inflammation contribute to initiation and progression of eye diseases including age-related macular degeneration (AMD). Deuteration of DHA at the bis-allylic positions (D-DHA) increases its resilience to oxidative damage in vitro. We studied the pharmacokinetics of dietary D-DHA as a therapy for replacing natural retinal DHA in vivo. Mice were fed 0.5% D-DHA for 77 days then switched to natural DHA (H-DHA) for 74 days. Tissue were harvested for analyses at various time points. D-DHA substitution levels were 75%-80% in the CNS and above 90% in all other tissues by day 77. D-DHA accretion was rapid in plasma and liver (t1/2a ∼2.8 d), followed by heart and red blood cells (t1/2a ∼8.5 d), then ocular tissues (choroid-RPE, neural retina, and optic nerve with t1/2a of 10.1, 23.4, and 26.3 days, respectively), while CNS accretion was slowest (t1/2a of 29.0-44.3 days). D-DHA elimination rates were comparable to, or slower than, accretion rates except for optic nerve. Retina had very long chain D-PUFA (D-VLC-PUFA) with 5 and 6 double bonds up to C36, as well as D-EPA and D-DPA derived metabolically from D-DHA. The neural retina and optic nerve reached the therapeutic target window (20%-50%) in 2-4 weeks. Biosynthesis of D-VLC-PUFA is consistent with normal metabolism. D-DHA crosses the blood-retina-barrier, enters visually active tissues, and is metabolized as its natural DHA parent where, as shown previously (Liu et al., 2022), it protects against lipid peroxidation.


Assuntos
Ácidos Docosa-Hexaenoicos , Atrofia Geográfica , Animais , Peroxidação de Lipídeos , Camundongos , Estresse Oxidativo , Retina/metabolismo
3.
Anal Chem ; 93(23): 8238-8247, 2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-34048647

RESUMO

No general method currently is available for the quantitative determination of deuterium (D) at C positions along a hydrocarbon chain. Bis-allylic deuterated highly unsaturated fatty acids (D-HUFA) are a novel class of drugs stabilized against H-abstraction-mediated oxidation by deuteration at the most labile positions. Ru-based catalytic deuteration overcomes the limited scale of bis-allylic D-HUFA production by total organic synthesis; however, it produces a complex mixture of bis-allylic D isotopologues and isotopomers, requiring detailed sequencing for characterization. We report here adaptation and application of the Paternó-Büchi (PB) reaction of 2-acetylpyridine to a series of D-HUFA with analysis by shotgun lipidomics to determine position-specific quantitative D abundances. Sodiated PBD-HUFA result in diagnostic ions of high abundance upon collision-induced dissociation (CID) activation, enabling sensitive differentiation and quantification of D fraction at each bis- and mono-allylic position for each isotopologue. Catalytically deuterated isotopologues D5-7 linolenic acid (D5-7 LnA), D6-8 arachidonic acid (D6-8 ARA), D7-9 eicosapentaenoic acid (D7-9 EPA), and D9-11 docosahexaenoic acid (D9-11 DHA) incorporate 80-98, 95-100, 81-100, and 83-100% D at their bis-allylic positions, respectively. D-HUFA isotopologues having D number greater than or equal to bis-allylic sites (e.g., D10-DHA or D11-DHA) deuterated >95% at bis-allylic positions, except for D-LnA. The mono-allylic position near the methyl end deuterates to a much greater extent than the mono-allylic position near the carboxyl end, and both positions deuterate only when bis-allylic D is near-saturated. This method enables rapid, accurate characterization of position and isotopomer-specific D composition and enables sequencing along the chain.


Assuntos
Ácidos Graxos Insaturados , Ácidos Graxos , Deutério , Ácidos Docosa-Hexaenoicos , Hidrocarbonetos , Oxirredução
4.
Anal Chem ; 91(23): 15147-15154, 2019 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-31689070

RESUMO

Monounsaturated normal fatty acids (n-MUFA) and saturated branched chain fatty acids (BCFA) are structurally characterized by separate tandem mass spectrometry methods for double bond localization and for chain branching in their respective fatty acid methyl ester (FAME) derivatives; however, these methods have never been applied to branched monounsaturated FAME. Here, we report application of electron ionization (EI)-MS/MS and solvent-mediated covalent adduct chemical ionization (CACI)-MS/MS of monounsaturated BCFA methyl esters (MUBCFAME) of a chain length of 15-20 carbons. A novel system was used to implement CI with low vapor pressure reagents in a tabletop triple quadrupole MS. Anteiso-MUBCFA EI-MS/MS of the molecular ion (M) yields a characteristic diagnostic ion [M-29]+. iso-MUBCFA can be distinguished from n-MUFA by an ion intensity ratio of [M-32]+/[M-43]+, with iso-MUBCFA yielding a ratio greater than 1.7, while n-MUFA yields a ratio less than 1.0. Chain branching at the iso and anteiso positions, terminal isopropyl and sec-butyl, respectively, do not alter CACI-MS/MS diagnostic ions compared to normal BCFA, enabling double bond positions of MUBCFA to be determined with the analogous α and ω diagnostic ions from cleavage on both sides of the erstwhile double bond. Taken together, this straightforward FAME-based technique via combination of EI-MS/MS and CACI-MS/MS enables fundamental structural identification of MUBCFA without standards.


Assuntos
Ésteres/química , Ácidos Graxos Monoinsaturados/química , Espectrometria de Massas em Tandem/métodos , Elétrons , Íons/química , Estrutura Molecular , Espectrometria de Massas por Ionização por Electrospray
5.
Pediatr Res ; 83(4): 874-879, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29166379

RESUMO

BackgroundExcess vernix caseosa produced by the fetal skin appears as particles suspended in the amniotic fluid in late gestation, is swallowed by the fetus, and is found throughout the newborn gastrointestinal tract as the first organisms are arriving to colonize the gut. Lipid-rich vernix contains an unusually high 29% branched chain fatty acids (BCFA). BCFAs reduce the incidence of necrotizing enterocolitis in an animal model, and were recently found predominantly in the sn-2 position of human milk triacylglycerols. Nothing is known about the influence of vernix BCFA on proinflammatory markers in human enterocytes.MethodsWe investigated the effect of vernix-monoacylglycerides (MAGs) (enriched with 30% BCFA) on interleukin (IL)-8 and NF-κB production in a human intestinal epithelial cell line (Caco-2). Caco-2 cells were pretreated with vernix-MAG or vernix-free fatty acid (FFA) prior to lipopolysaccharide (LPS) activation.ResultsBoth vernix-MAG and vernix-FFA increased cell BCFA and eliminated an LPS-induced 20% reduction in cell viability. In stimulated Caco-2 cells, vernix-MAG was more effective than vernix-FFA in suppressing IL-8 and NF-κB. Activated vernix-MAG-treated cells expressed less of the cell-surface Toll-like receptor4 (TLR-4) compared with controls.ConclusionThis is the first study to show the reduction of proinflammatory markers in human cells mediated by BCFA-MAG.


Assuntos
Enterócitos/citologia , Ácidos Graxos/química , Interleucina-8/metabolismo , NF-kappa B/metabolismo , Pele/embriologia , Verniz Caseoso/química , Líquido Amniótico/química , Biomarcadores/metabolismo , Células CACO-2 , Sobrevivência Celular , Enterocolite Necrosante/metabolismo , Feminino , Trato Gastrointestinal/embriologia , Trato Gastrointestinal/crescimento & desenvolvimento , Perfilação da Expressão Gênica , Humanos , Recém-Nascido , Inflamação , Lipídeos/química , Lipopolissacarídeos/química , Leite Humano/metabolismo , Gravidez , Triglicerídeos/química
6.
Biochim Biophys Acta ; 1861(2): 91-97, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26597785

RESUMO

Sapienic acid, 16:1n-10 is the most abundant unsaturated fatty acid on human skin where its synthesis is mediated by FADS2 in the sebaceous glands. The FADS2 product introduces a double bond at the Δ6, Δ4 and Δ8 positions by acting on at least ten substrates, including 16:0, 18:2n-6, and 18:3n-3. Our aim was to characterize the competition for accessing FADS2 mediated Δ6 desaturation between 16:0 and the most abundant polyunsaturated fatty acids (PUFA) in the human diet, 18:2n-6 and 18:3n-3, to evaluate whether competition may be relevant in other tissues and thus linked to metabolic abnormalities associated with FADS2 or fatty acid levels. MCF7 cells stably transformed with FADS2 biosynthesize 16:1n-10 from exogenous 16:0 in preference to 16:1n-7, the immediate product of SCD highly expressed in cancer cell lines, and 16:1n-9 via partial ß-oxidation of 18:1n-9. Increasing availability of 18:2n-6 or 18:3n-3 resulted in decreased bioconversion of 16:0 to 16:1n-10, simultaneously increasing the levels of highly unsaturated products. FADS2 cells accumulate the desaturation-elongation products 20:3n-6 and 20:4n-3 in preference to the immediate desaturation products 18:3n-6 and 18:4n-3 implying prompt/coupled elongation of the nascent desaturation products. MCF7 cells incorporate newly synthesized 16:1n-10 into phospholipids. These data suggest that excess 16:0 due to, for instance, de novo lipogenesis from high carbohydrate or alcohol consumption, inhibits synthesis of highly unsaturated fatty acids, and may in part explain why supplemental preformed EPA and DHA in some studies improves insulin resistance and other factors related to diabetes and metabolic syndrome aggravated by excess calorie consumption.


Assuntos
Ácidos Graxos Dessaturases/metabolismo , Ácidos Graxos Insaturados/metabolismo , Ácido Linoleico/farmacologia , Ácido Palmítico/farmacologia , Ácidos Palmíticos/farmacologia , Ácido alfa-Linolênico/farmacologia , Animais , Animais Recém-Nascidos , Transporte Biológico , Humanos , Lipogênese/fisiologia , Fígado/química , Células MCF-7 , Oxirredução , Ácido Palmítico/metabolismo , Papio
7.
Mol Biol Evol ; 33(7): 1726-39, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27188529

RESUMO

Long chain polyunsaturated fatty acids (LCPUFA) are bioactive components of membrane phospholipids and serve as substrates for signaling molecules. LCPUFA can be obtained directly from animal foods or synthesized endogenously from 18 carbon precursors via the FADS2 coded enzyme. Vegans rely almost exclusively on endogenous synthesis to generate LCPUFA and we hypothesized that an adaptive genetic polymorphism would confer advantage. The rs66698963 polymorphism, a 22-bp insertion-deletion within FADS2, is associated with basal FADS1 expression, and coordinated induction of FADS1 and FADS2 in vitro. Here, we determined rs66698963 genotype frequencies from 234 individuals of a primarily vegetarian Indian population and 311 individuals from the US. A much higher I/I genotype frequency was found in Indians (68%) than in the US (18%). Analysis using 1000 Genomes Project data confirmed our observation, revealing a global I/I genotype of 70% in South Asians, 53% in Africans, 29% in East Asians, and 17% in Europeans. Tests based on population divergence, site frequency spectrum, and long-range haplotype consistently point to positive selection encompassing rs66698963 in South Asian, African, and some East Asian populations. Basal plasma phospholipid arachidonic acid (ARA) status was 8% greater in I/I compared with D/D individuals. The biochemical pathway product-precursor difference, ARA minus linoleic acid, was 31% and 13% greater for I/I and I/D compared with D/D, respectively. This study is consistent with previous in vitro data suggesting that the insertion allele enhances n-6 LCPUFA synthesis and may confer an adaptive advantage in South Asians because of the traditional plant-based diet practice.


Assuntos
Ácido Araquidônico/biossíntese , Ácidos Graxos Dessaturases/genética , Seleção Genética , Adulto , Alelos , Ácido Araquidônico/genética , Ácido Araquidônico/metabolismo , Bases de Dados de Ácidos Nucleicos , Dessaturase de Ácido Graxo Delta-5 , Ácidos Graxos Dessaturases/metabolismo , Ácidos Graxos Insaturados/genética , Ácidos Graxos Insaturados/metabolismo , Feminino , Frequência do Gene/genética , Variação Genética , Haplótipos , Humanos , Mutação INDEL , Masculino , Fosfolipídeos/genética , Fosfolipídeos/metabolismo , Polimorfismo de Nucleotídeo Único , Adulto Jovem
8.
FASEB J ; 29(9): 3911-9, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26065859

RESUMO

Docosahexaenoic acid (DHA) is a Δ4-desaturated C22 fatty acid and the limiting highly unsaturated fatty acid (HUFA) in neural tissue. The biosynthesis of Δ4-desaturated docosanoid fatty acids 22:6n-3 and 22:5n-6 are believed to proceed via a circuitous biochemical pathway requiring repeated use of a fatty acid desaturase 2 (FADS2) protein to perform Δ6 desaturation on C24 fatty acids in the endoplasmic reticulum followed by 1 round of ß-oxidation in the peroxisomes. We demonstrate here that the FADS2 gene product can directly Δ4-desaturate 22:5n-3→22:6n-3 (DHA) and 22:4n-6→22:5n-6. Human MCF-7 cells lacking functional FADS2-mediated Δ6-desaturase were stably transformed with FADS2, FADS1, or empty vector. When incubated with 22:5n-3 or 22:4n-6, FADS2 stable cells produce 22:6n-3 or 22:5n-6, respectively. Similarly, FADS2 stable cells when incubated with d5-18:3n-3 show synthesis of d5-22:6n-3 with no labeling of 24:5n-3 or 24:6n-3 at 24 h. Further, both C24 fatty acids are shown to be products of the respective C22 fatty acids via elongation. Our results demonstrate that the FADS2 classical transcript mediates direct Δ4 desaturation to yield 22:6n-3 and 22:5n-6 in human cells, as has been widely shown previously for desaturation by fish and many other organisms.


Assuntos
Ácidos Docosa-Hexaenoicos/biossíntese , Ácidos Graxos Dessaturases/metabolismo , Ácidos Graxos Insaturados/biossíntese , Animais , Catálise , Linhagem Celular Tumoral , Dessaturase de Ácido Graxo Delta-5 , Ácidos Docosa-Hexaenoicos/genética , Ácidos Graxos Dessaturases/genética , Ácidos Graxos Insaturados/genética , Humanos , Papio
9.
Mol Biol Rep ; 43(8): 761-766, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27216536

RESUMO

Fads3 is the third member of the fatty acid desaturase gene cluster; with at least eight evolutionarily conserved alternative transcripts (AT), having no clearly established function as are known for FADS2 and FADS1. Here we present identification of a novel Fads3 transcript in mice (Fads3AT9), characterize Fads3AT9 expression in mouse tissues and evaluate correlations with metabolite profiles. Total RNA obtained from mouse tissues is reverse-transcribed into cDNA and used as template for PCR reactions. Tissue fatty acids were extracted and quantified by gas chromatography. Sequencing analysis revealed complete absence of exon 2 resulting in an open reading frame of 1239 bp, encoding a putative protein of 412 aa with loss of 37 aa compared to classical Fads3 (Fads3CS). FADS3AT9 retains all the conserved regions characteristic of front end desaturase (cytochrome b5 domain and three histidine repeats). Both Fads3CS and Fads3AT9 are ubiquitously expressed in 11 mouse tissues. Fads3AT9 abundance was greater than Fads3CS in pancreas, liver, spleen, brown adipose tissue and thymus. Fads3CS expression is low in pancreas while Fads3AT9 is over ten-fold greater abundance. The eicosanoid precursor fatty acid 20:4n - 6, the immediate desaturation product of the Fads1 coded Δ5-desaturase, was highest in pancreas where Fads3CS is low. Changes in expression patterns and fatty acid profiles suggest that Fads3AT9 may play a role in the regulation and/or biosynthesis of long chain polyunsaturated fatty acids from precursors.


Assuntos
Processamento Alternativo , Ácidos Graxos Dessaturases/genética , RNA Mensageiro/genética , Animais , Ácidos Graxos Dessaturases/metabolismo , Feminino , Expressão Gênica , Isoenzimas/genética , Isoenzimas/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Especificidade de Órgãos , Pâncreas/enzimologia , RNA Mensageiro/metabolismo
10.
J Lipid Res ; 55(3): 531-9, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24470588

RESUMO

Long-chain PUFAs (LCPUFAs) occur in foods primarily in the natural lipid classes, triacylglycerols (TAGs) or phospholipids (PLs). We studied the relative efficacy of the neural omega-3 DHA provided in formula to growing piglets as a dose of (13)C-DHA bound to either TAG or phosphatidylcholine (PC). Piglets were assigned to identical formula-based diets from early life and provided with TAG-(13)C-DHA or PC-(13)C-DHA orally at 16 days. Days later, piglet organs were analyzed for (13)C-DHA and other FA metabolites. PC-(13)C-DHA was 1.9-fold more efficacious for brain gray matter DHA accretion than TAG-(13)C-DHA, and was similarly more efficacious in gray matter synaptosomes, retina, liver, and red blood cells (RBCs). Liver labeling was greatest, implying initial processing in that organ followed by export to other organs, and suggesting that transfer from gut to bloodstream to liver in part drove the difference in relative efficacy for tissue accretion. Apparent retroconversion to 22:5n-3 was more than double for PC-(13)C-DHA and was more prominent in neural tissue than in liver or RBCs. These data directly support greater efficacy for PC as a carrier for LCPUFAs compared with TAG, consistent with previous studies of arachidonic acid and DHA measured in other species.


Assuntos
Encéfalo/metabolismo , Ácidos Docosa-Hexaenoicos/metabolismo , Fosfolipídeos/metabolismo , Triglicerídeos/metabolismo , Animais , Animais Recém-Nascidos , Ácido Araquidônico/metabolismo , Isótopos de Carbono , Dieta , Gorduras na Dieta/administração & dosagem , Ácidos Docosa-Hexaenoicos/administração & dosagem , Eritrócitos/metabolismo , Ácidos Graxos/metabolismo , Feminino , Cromatografia Gasosa-Espectrometria de Massas , Fígado/metabolismo , Masculino , Fosfatidilcolinas/metabolismo , Retina/metabolismo , Suínos
11.
Cancers (Basel) ; 16(8)2024 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-38672672

RESUMO

MYCN amplification (MNA) and disruption of tumor suppressor microRNA (TSmiR) function are key drivers of poor outcomes in neuroblastoma (NB). While MYCN and TSmiRs regulate glucose metabolism, their role in de novo fatty acid synthesis (FAS) and unsaturated FAS (UFAS) remains poorly understood. Here, we show that FAS and UFAS (U/FAS) genes FASN, ELOVL6, SCD, FADS2, and FADS1 are upregulated in high-risk (HR) NB and that their expression is associated with lower overall survival. RNA-Seq analysis of human NB cell lines revealed parallel U/FAS gene expression patterns. Consistent with this, we found that NB-related TSmiRs were predicted to target these genes extensively. We further observed that both MYC and MYCN upregulated U/FAS pathway genes while suppressing TSmiR host gene expression, suggesting a possible U/FAS regulatory network between MYCN and TSmiRs in NB. NB cells are high in de novo synthesized omega 9 (ω9) unsaturated fatty acids and low in both ω6 and ω3, suggesting a means for NB to limit cell-autonomous immune stimulation and reactive oxygen species (ROS)-driven apoptosis from ω6 and ω3 unsaturated fatty acid derivatives, respectively. We propose a model in which MYCN and TSmiRs regulate U/FAS and play an important role in NB pathology, with implications for other MYC family-driven cancers.

12.
Prog Lipid Res ; 92: 101242, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37597812

RESUMO

Dysregulation of fatty acid metabolism and de novo lipogenesis is a key driver of several cancer types through highly unsaturated fatty acid (HUFA) signaling precursors such as arachidonic acid. The human chromosome 11q13 locus has long been established as the most frequently amplified in a variety of human cancers. The fatty acid desaturase genes (FADS1, FADS2 and FADS3) responsible for HUFA biosynthesis localize to the 11q12-13.1 region. FADS2 activity is promiscuous, catalyzing biosynthesis of several unsaturated fatty acids by Δ6, Δ8, and Δ4 desaturation. Our main aim here is to review known and putative consequences of FADS2 dysregulation due to effects on the 11q13 locus potentially driving various cancer types. FADS2 silencing causes synthesis of sciadonic acid (5Z,11Z,14Z-20:3) in MCF7 cells and breast cancer in vivo. 5Z,11Z,14Z-20:3 is structurally identical to arachidonic acid (5Z,8Z,11Z,14Z-20:4) except it lacks the internal Δ8 double bond required for prostaglandin and leukotriene synthesis, among other eicosanoids. Palmitic acid has substrate specificity for both SCD and FADS2. Melanoma, prostate, liver and lung cancer cells insensitive to SCD inhibition show increased FADS2 activity and sapienic acid biosynthesis. Elevated serum mead acid levels found in hepatocellular carcinoma patients suggest an unsatisfied demand for arachidonic acid. FADS2 circular RNAs are at high levels in colorectal and lung cancer tissues. FADS2 circular RNAs are associated with shorter overall survival in colorectal cancer patients. The evidence thusfar supports an effort for future research on the role of FADS2 as a tumor suppressor in a range of neoplastic disorders.


Assuntos
Neoplasias Pulmonares , RNA Circular , Masculino , Humanos , Ácidos Graxos Dessaturases/genética , Ácidos Graxos Dessaturases/metabolismo , Ácidos Graxos Insaturados/metabolismo , Ácidos Araquidônicos
13.
Foods ; 12(2)2023 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-36673399

RESUMO

Ready-to-use therapeutic food (RUTF) is used to treat young children diagnosed with severe acute malnutrition. RUTF with low and balanced linoleic and alpha-linolenic acid, plus omega-3 docosahexaenoic acid (DHA), supports long-term cognitive recovery. DHA is prone to degradation due to peroxidation, possibly exacerbated by the iron inherently in RUTF. Our goals were to prepare benchtop and manufacturing scale of RUTF formulations that include DHA and measure its retention. Twenty-seven RUTF formulas with base ingredients, including oats, high oleic or commodity peanuts, and encapsulated or oil-based DHA at various levels were prepared at benchtop scale, followed by seven months of climate-controlled storage. These pilot samples had similar relative DHA retention. At the manufacturing scale, DHA was added at one of two stages in the process, either at the initial or the final mixing stage. Samples taken at preliminary or later steps show that less than 20% of DHA added at the early stages disappeared prior to packaging for any recipe tested. Overall, our data indicate that most DHA included in RUTF is retained in the final product and that DHA is best retained when added at the latest manufacturing stage.

14.
Commun Biol ; 5(1): 584, 2022 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-35701601

RESUMO

Beige adipocytes are induced by cold temperatures or ß3-adrenergic receptor (Adrb3) agonists. They create heat through glucose and fatty acid (FA) oxidation, conferring metabolic benefits. The distinct and shared mechanisms by which these treatments induce beiging are unknown. Here, we perform single-nucleus assay for transposase-accessible chromatin sequencing (snATAC-seq) on adipose tissue from mice exposed to cold or an Adrb3 agonist to identify cellular and chromatin accessibility dynamics during beiging. Both stimuli induce chromatin remodeling that influence vascularization and inflammation in adipose. Beige adipocytes from cold-exposed mice have increased accessibility at genes regulating glycolytic processes, whereas Adrb3 activation increases cAMP responses. While both thermogenic stimuli increase accessibility at genes regulating thermogenesis, lipogenesis, and beige adipocyte development, the kinetics and magnitudes of the changes are distinct for the stimuli. Accessibility changes at lipogenic genes are linked to functional changes in lipid composition of adipose. Both stimuli tend to decrease the proportion of palmitic acids, a saturated FA in adipose. However, Adrb3 activation increases the proportion of monounsaturated FAs, whereas cold increases the proportion of polyunsaturated FAs. These findings reveal common and distinct mechanisms of cold and Adrb3 induced beige adipocyte biogenesis, and identify unique functional consequences of manipulating these pathways in vivo.


Assuntos
Adipócitos Bege , Redes Reguladoras de Genes , Adipócitos Bege/metabolismo , Tecido Adiposo , Animais , Cromatina/metabolismo , Camundongos , Termogênese/genética
15.
Aging Cell ; 21(4): e13579, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35257475

RESUMO

Oxidative stress plays a central role in age-related macular degeneration (AMD). Iron, a potent generator of hydroxyl radicals through the Fenton reaction, has been implicated in AMD. One easily oxidized molecule is docosahexaenoic acid (DHA), the most abundant polyunsaturated fatty acid in photoreceptor membranes. Oxidation of DHA produces toxic oxidation products including carboxyethylpyrrole (CEP) adducts, which are increased in the retinas of AMD patients. In this study, we hypothesized that deuterium substitution on the bis-allylic sites of DHA in photoreceptor membranes could prevent iron-induced retinal degeneration by inhibiting oxidative stress and lipid peroxidation. Mice were fed with either DHA deuterated at the oxidation-prone positions (D-DHA) or control natural DHA and then given an intravitreal injection of iron or control saline. Orally administered D-DHA caused a dose-dependent increase in D-DHA levels in the neural retina and retinal pigment epithelium (RPE) as measured by mass spectrometry. At 1 week after iron injection, D-DHA provided nearly complete protection against iron-induced retinal autofluorescence and retinal degeneration, as determined by in vivo imaging, electroretinography, and histology. Iron injection resulted in carboxyethylpyrrole conjugate immunoreactivity in photoreceptors and RPE in mice fed with natural DHA but not D-DHA. Quantitative PCR results were consistent with iron-induced oxidative stress, inflammation, and retinal cell death in mice fed with natural DHA but not D-DHA. Taken together, our findings suggest that DHA oxidation is central to the pathogenesis of iron-induced retinal degeneration. They also provide preclinical evidence that dosing with D-DHA could be a viable therapeutic strategy for retinal diseases involving oxidative stress.


Assuntos
Atrofia Geográfica , Sobrecarga de Ferro , Degeneração Macular , Degeneração Retiniana , Animais , Modelos Animais de Doenças , Ácidos Docosa-Hexaenoicos/efeitos adversos , Atrofia Geográfica/induzido quimicamente , Atrofia Geográfica/metabolismo , Atrofia Geográfica/patologia , Humanos , Ferro/efeitos adversos , Ferro/metabolismo , Sobrecarga de Ferro/complicações , Sobrecarga de Ferro/tratamento farmacológico , Sobrecarga de Ferro/metabolismo , Degeneração Macular/tratamento farmacológico , Degeneração Macular/metabolismo , Camundongos , Estresse Oxidativo , Degeneração Retiniana/metabolismo , Epitélio Pigmentado da Retina/metabolismo
16.
Am J Clin Nutr ; 115(5): 1322-1333, 2022 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-34726694

RESUMO

BACKGROUND: There is concern that the PUFA composition of ready-to-use therapeutic food (RUTF) for the treatment of severe acute malnutrition (SAM) is suboptimal for neurocognitive recovery. OBJECTIVES: We tested the hypothesis that RUTF made with reduced amounts of linoleic acid, achieved using high-oleic (HO) peanuts without added DHA (HO-RUTF) or with added DHA (DHA-HO-RUTF), improves cognition when compared with standard RUTF (S-RUTF). METHODS: A triple-blind, randomized, controlled clinical feeding trial was conducted among children with uncomplicated SAM in Malawi with 3 types of RUTF: DHA-HO-RUTF, HO-RUTF, and S-RUTF. The primary outcomes, measured in a subset of subjects, were the Malawi Developmental Assessment Tool (MDAT) global z-score and a modified Willatts problem-solving assessment (PSA) intention score for 3 standardized problems, measured 6 mo and immediately after completing RUTF therapy, respectively. MDAT domain z-scores, plasma fatty acid content, anthropometry, and eye tracking were secondary outcomes. Comparisons were made between the novel PUFA RUTFs and S-RUTF. RESULTS: Among the 2565 SAM children enrolled, mean global MDAT z-scores were -0.69 ± 1.19 and -0.88 ± 1.27 for children receiving DHA-HO-RUTF and S-RUTF, respectively (difference 0.19, 95% CI: 0.01, 0.38). Children receiving DHA-HO-RUTF had higher gross motor and social domain z-scores than those receiving S-RUTF. The PSA problem 3 scores did not differ by dietary group (OR: 0.92, 95% CI: 0.67, 1.26 for DHA-HO-RUTF). After 4 wk of treatment, plasma phospholipid EPA and α-linolenic acid were greater in children consuming DHA-HO-RUTF or HO-RUTF when compared with S-RUTF (for all 4 comparisons P values < 0.001), but only plasma DHA was greater in DHA-HO-RUTF than S-RUTF (P < 0.001). CONCLUSIONS: Treatment of uncomplicated SAM with DHA-HO-RUTF resulted in an improved MDAT score, conferring a cognitive benefit 6 mo after completing diet therapy. This treatment should be explored in operational settings. This trial was registered at clinicaltrials.gov as NCT03094247.


Assuntos
Desnutrição , Desnutrição Aguda Grave , Criança , Cognição , Fast Foods , Humanos , Lactente , Ácido Linoleico , Masculino , Desnutrição/tratamento farmacológico , Antígeno Prostático Específico
17.
Antioxidants (Basel) ; 11(4)2022 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-35453366

RESUMO

Arachidonic acid (ARA) is a major component of lipid bilayers as well as the key substrate for the eicosanoid cascades. ARA is readily oxidized, and its non-enzymatic and enzymatic oxidation products induce inflammatory responses in nearly all tissues, including lung tissues. Deuteration at bis-allylic positions substantially decreases the overall rate of ARA oxidation when hydrogen abstraction is an initiating event. To compare the effects of dosing of arachidonic acid (H-ARA) and its bis-allylic hexadeuterated form (D-ARA) on lungs in conventionally healthy mice and in an acute lung injury model, mice were dosed with H-ARA or D-ARA for six weeks through dietary supplementation and then challenged with intranasal lipopolysaccharide (LPS) for subsequent analysis of bronchoalveolar lavage fluid and lung tissue. Dosing on D-ARA resulted in successful incorporation of D-ARA into various tissues. D-ARA significantly reduced LPS-induced adverse effects on alveolar septal thickness and the bronchoalveolar area. Oral deuterated ARA is taken up efficiently and protects against adverse LPS-induced pathology. This suggests novel therapeutic avenues for reducing lung damage during severe infections and other pathological conditions with inflammation in the pulmonary system and other inflammatory diseases.

18.
PLoS One ; 16(12): e0261783, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34972124

RESUMO

Obesity promotes type 2 diabetes and cardiometabolic pathologies. Vertical sleeve gastrectomy (VSG) is used to treat obesity resulting in long-term weight loss and health improvements that precede weight loss; however, the mechanisms underlying the immediate benefits remain incompletely understood. Because adipose plays a crucial role in energy homeostasis and utilization, we hypothesized that VSG exerts its influences, in part, by modulating adipose functional states. We applied single-cell ATAC sequencing and lipid profiling to inguinal and epididymal adipose depots from mice that received sham surgery or VSG. We observed depot-specific cellular composition and chromatin accessibility patterns that were altered by VSG. Specifically, accessibility at Scd1, a fatty acid desaturase, was substantially reduced after VSG in mature adipocytes of inguinal but not epididymal depots. This was accompanied by reduced accumulation of SCD1-produced unsaturated fatty acids. Given these findings and reports that reductions in Scd1 attenuate obesity and insulin resistance our results suggest VSG exerts its beneficial effects through an inguinal depot-specific reduction of SCD1 activity.


Assuntos
Cromatina , Diabetes Mellitus Tipo 2 , Animais , Cirurgia Bariátrica , Gastrectomia , Camundongos , Redução de Peso
19.
Artigo em Inglês | MEDLINE | ID: mdl-34303883

RESUMO

PURPOSE: Plasticity in fatty acid metabolism is increasingly recognized as a major feature influencing cancer progression and efficacy of treatments. Estrogen receptor positive MCF7 human breast cancer cells have long been known to have no FADS2-mediated Δ6-desaturase activity. Our objective was to examine the effect of estrogen and the "antiestrogen" aromatase inhibitor letrozole, on Δ5- and Δ6-desaturase synthesized fatty acids in vitro. METHODS: Eicosa-11,14-dienoic acid (20:2n-6), a known substrate for both FADS1 and FADS2, was used as a sentinel of relative FADS2 and FADS1 activity. MCF7 cells and four additional estrogen responsive wild type cell lines (HepG2, SK-N-SH, Y79 and Caco2) were studied. FAME were quantified by GC-FID and structures identified by GCCACI-MS/MS. RESULTS: In all five cell lines, estrogen caused a dose dependent decrease in sciadonic acid (5,11,14-20:3, ScA) via apparent inhibition of FADS1 activity, and had no effect on FADS2 catalyzed synthesis of dihomo-gamma linolenic acid (8,11,14-20:3; DGLA). In MCF7 cells, letrozole caused a dose dependent increase in FADS2-catalyzed DGLA synthesis, which plateaued in SK-N-SH cells. CONCLUSION: Letrozole restores Δ6-desaturase mediated synthesis of the anti-inflammatory PGE1-precursor DGLA in vitro and is the first endocrine-active agent to have opposing effects on FADS1 and FADS2 catalyzed activities.


Assuntos
Inibidores da Aromatase/farmacologia , Dessaturase de Ácido Graxo Delta-5/efeitos dos fármacos , Estrogênios/farmacologia , Ácidos Graxos Dessaturases/efeitos dos fármacos , Letrozol/farmacologia , Células CACO-2 , Linhagem Celular Tumoral , Dessaturase de Ácido Graxo Delta-5/metabolismo , Ácidos Graxos Dessaturases/metabolismo , Células Hep G2 , Humanos , Células MCF-7 , Receptores de Estrogênio/metabolismo
20.
Artigo em Inglês | MEDLINE | ID: mdl-33038834

RESUMO

COVID-19 symptoms vary from silence to rapid death, the latter mediated by both a cytokine storm and a thrombotic storm. SARS-CoV (2003) induces Cox-2, catalyzing the synthesis, from highly unsaturated fatty acids (HUFA), of eicosanoids and docosanoids that mediate both inflammation and thrombosis. HUFA balance between arachidonic acid (AA) and other HUFA is a likely determinant of net signaling to induce a healthy or runaway physiological response. AA levels are determined by a non-protein coding regulatory polymorphisms that mostly affect the expression of FADS1, located in the FADS gene cluster on chromosome 11. Major and minor haplotypes in Europeans, and a specific functional insertion-deletion (Indel), rs66698963, consistently show major differences in circulating AA (>50%) and in the balance between AA and other HUFA (47-84%) in free living humans; the indel is evolutionarily selective, probably based on diet. The pattern of fatty acid responses is fully consistent with specific genetic modulation of desaturation at the FADS1-mediated 20:3→20:4 step. Well established principles of net tissue HUFA levels indicate that the high linoleic acid and low alpha-linoleic acid in populations drive the net balance of HUFA for any individual. We predict that fast desaturators (insertion allele at rs66698963; major haplotype in Europeans) are predisposed to higher risk and pathological responses to SARS-CoV-2 could be reduced with high dose omega-3 HUFA.


Assuntos
Infecções por Coronavirus/complicações , Ácidos Graxos Insaturados/biossíntese , Inflamação/etiologia , Metabolismo dos Lipídeos/genética , Pneumonia Viral/complicações , Trombose/etiologia , Betacoronavirus/fisiologia , COVID-19 , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/genética , Infecções por Coronavirus/metabolismo , Dessaturase de Ácido Graxo Delta-5 , Ácidos Graxos Insaturados/genética , Predisposição Genética para Doença , Haplótipos , Humanos , Individualidade , Inflamação/epidemiologia , Inflamação/genética , Inflamação/metabolismo , Lipogênese/genética , Redes e Vias Metabólicas/genética , Pandemias , Pneumonia Viral/epidemiologia , Pneumonia Viral/genética , Pneumonia Viral/metabolismo , Polimorfismo de Nucleotídeo Único , Fatores de Risco , SARS-CoV-2 , Trombose/epidemiologia , Trombose/genética , Trombose/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA