Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 99
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Dairy Sci ; 102(6): 4783-4797, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30954261

RESUMO

The aims of this study were to investigate the effects of Lactobacillus plantarum DR7 isolated from bovine milk against upper respiratory tract infections (URTI) and elucidate the possible mechanisms underlying immunomodulatory properties. The DR7 strain (9 log cfu/d) was administered for 12 wk in a randomized, double-blind, and placebo-controlled human study involving 109 adults (DR7, n = 56; placebo, n = 53). Subjects were assessed for health conditions monthly via questionnaires, and blood samples were evaluated for cytokine concentrations, peroxidation and oxidative stress, and gene expression in T cells and natural killer (NK) cells. The administration of DR7 reduced the duration of nasal symptoms (mean difference 5.09 d; 95% CI: 0.42-9.75) and the frequency of URTI (mean difference 0.32; 95% CI: 0.01-0.63) after 12 and 4 wk, respectively, compared with the placebo. The DR7 treatment suppressed plasma proinflammatory cytokines (IFN-γ, TNF-α) in middle-aged adults (30 to 60 yr old), while enhancing anti-inflammatory cytokines (IL-4, IL-10) in young adults (<30 yr old), accompanied by reduced plasma peroxidation and oxidative stress levels compared with the placebo. Young adults who received DR7 showed higher expression of plasma CD44 and CD117 by 4.50- and 2.22-fold, respectively, compared with the placebo. Meanwhile, middle-aged adults showed lower expression of plasma CD4 and CD8 by 11.26- and 1.80-fold, respectively, compared with the placebo, indicating less T-cell activation. In contrast, both young and middle-aged adults who received DR7 showed enhanced presence of nonresting and mature NK cells compared with those who received the placebo. We postulate that DR7 alleviated the symptoms of URTI by improving inflammatory parameters and enhancing immunomodulatory properties.


Assuntos
Lactobacillus plantarum , Leite , Probióticos , Infecções Respiratórias , Adolescente , Adulto , Animais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem , Citocinas/imunologia , Método Duplo-Cego , Interleucina-10/imunologia , Células Matadoras Naturais/imunologia , Lactobacillus plantarum/imunologia , Leite/microbiologia , Probióticos/uso terapêutico , Infecções Respiratórias/imunologia , Infecções Respiratórias/terapia
2.
Crit Rev Biotechnol ; 38(3): 438-454, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-28877637

RESUMO

The Zika virus (ZIKV) used to be an obscure flavivirus closely related to dengue virus (DENV). Transmission of this epidemic pathogen occurs mainly via mosquitoes, but it is also capable of placental and sexual transmission. Although the characteristics of these viruses are well defined, infections are unpredictable in terms of disease severity, unusual clinical manifestations, unexpected methods of transmission, long-term persistence, and the development of new strains. Recently, ZIKV has gained huge medical attention following the large-scale epidemics around the world, and reported cases of congenital abnormalities associated with Zika virus infections which have created a public health emergency of international concern. Despite continuous research on ZIKV, no specific treatment or vaccine has been developed, excepting a preventive strategy for congenital ZIKV infection. Probiotics, known as GRAS, are bacteria that confer various health beneficial effects, and have been shown to be effective at curing a number of viral diseases by modulating the immune system. Furthermore, probiotic preparations consisting of dead cells and cellular metabolites, so-called "Ghost probiotics", can also act as biological response modifiers. Here, we review available information on the epidemiology, transmission, and clinical features of ZIKV, and on treatment and prevention strategies. In addition, we emphasize the use of probiotics and plant-based natural remedies and describe their action mechanisms, and the green technologies for microbial conversion, which could contribute to the development of novel therapies that may reduce the pathogenicity of ZIKV. Accordingly, we draw attention to new findings, unanswered questions, unresolved issues, and controversies regarding ZIKV.


Assuntos
Probióticos/farmacologia , Zika virus/efeitos dos fármacos , Animais , Humanos , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/uso terapêutico , Probióticos/uso terapêutico , Internalização do Vírus/efeitos dos fármacos , Infecção por Zika virus/tratamento farmacológico , Infecção por Zika virus/epidemiologia , Infecção por Zika virus/prevenção & controle , Infecção por Zika virus/transmissão
3.
Pak J Pharm Sci ; 29(3 Suppl): 1081-5, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-27383487

RESUMO

Acne vulgaris is the most common skin diseases that people experience during their lives. Thirteen rhizosphere isolates were screened against Propionibacterium acnes. The bacterium exhibited the highest activity against P. acnes was identified as Bacillus methylotrophicus YML008 by 16S rRNA gene sequencing. Scanning electron microscopy was used to assess the changes in morphology of P. acnes. Preliminary studies on the antimicrobial substance demonstrated the hydrophilic nature of compound with MIC of 0.17mg/ml and MBC of 0.3mg/ml. The cytotoxic effect of the extract was least (80% survival) as compared to benzyperoxide (40% survival). These results suggest YML008 as a promising bioresource and may be useful as a lead bacterium to develop a new type of anti-acne skin care prep to cure or prevent acne. Further, mechanism of action and proper clinical trials may be promising for this research.


Assuntos
Antibacterianos/farmacologia , Bacillus/metabolismo , Fármacos Dermatológicos/farmacologia , Propionibacterium acnes/efeitos dos fármacos , Antibacterianos/isolamento & purificação , Antibacterianos/metabolismo , Antibiose , Bacillus/classificação , Bacillus/genética , Peróxido de Benzoíla/farmacologia , Fármacos Dermatológicos/isolamento & purificação , Fármacos Dermatológicos/metabolismo , Testes de Sensibilidade a Antimicrobianos por Disco-Difusão , Relação Dose-Resposta a Droga , Interações Hidrofóbicas e Hidrofílicas , Microscopia Eletrônica de Varredura , Propionibacterium acnes/patogenicidade , Propionibacterium acnes/ultraestrutura , Ribotipagem , Fatores de Tempo
4.
BMC Complement Altern Med ; 15: 84, 2015 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-25887244

RESUMO

BACKGROUND: Nowadays plant derived natural compounds have gained huge amount of research attention especially in food and medicine industries due to their multitude of biological and therapeutic properties as alternative medicines. METHODS: In this study, a diterpenoid compound taxoquinone, isolated from Metasequoia glyptostroboides was evaluated for its α-glucosidase and tyrosinase inhibitory efficacy in terms of its potent anti-diabetic and depigmentation potential, respectively. RESULTS: As a result, taxoquinone at the concentration range of 100-3,000 µg/mL and 200-1,000 µg/mL showed potent efficacy on inhibiting α-glucosidase and tyrosinase enzymes by 9.24-51.32% and 11.14-52.32%, respectively. CONCLUSIONS: The findings of this study clearly evident potent therapeutic efficacy of an abietane diterpenoid taxoquinone isolated from M. glyptostroboides with a possibility for using it as a novel candidate in food and medicine industry as a natural alternative medicine to prevent diabetes mellitus type-2 related disorders and as a depigmentation agent.


Assuntos
Abietanos/farmacologia , Cupressaceae/química , Inibidores de Glicosídeo Hidrolases/farmacologia , Hipoglicemiantes/farmacologia , Monofenol Mono-Oxigenase/antagonistas & inibidores , Extratos Vegetais/farmacologia , alfa-Glucosidases/metabolismo , Abietanos/isolamento & purificação , Abietanos/uso terapêutico , Diabetes Mellitus Tipo 2/enzimologia , Diabetes Mellitus Tipo 2/prevenção & controle , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/uso terapêutico , Inibidores de Glicosídeo Hidrolases/isolamento & purificação , Inibidores de Glicosídeo Hidrolases/uso terapêutico , Hipoglicemiantes/isolamento & purificação , Hipoglicemiantes/uso terapêutico , Fitoterapia , Extratos Vegetais/química , Extratos Vegetais/uso terapêutico
5.
Pharmaceuticals (Basel) ; 17(6)2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38931347

RESUMO

The prevalence of obesity, characterized by an excessive accumulation of adipose tissue and adipocyte hypertrophy, presents a major public health challenge. This study investigates the therapeutic potential of two probiotic strains, Lactobacillus sakei Probio65 and Lactobacillus plantarum Probio-093, in the context of obesity. Utilizing 3T3-L1 cell-derived human adipocytes, we assessed Probio65's and Probio-093's capacity to mitigate triglyceride accumulation and influence adipocytokine production in vitro. Subsequently, an in vivo trial with male C57BL/6J mice examined the effects of both probiotic strains on adipose tissue characteristics, body weight, fat mass, and obesity-related gene expression. This study employed both live and ethanol-extracted bacterial cells. The results demonstrated significant reductions in the triglyceride deposition, body weight, and adipose tissue mass in the treated groups (p < 0.05). Furthermore, both strains modulated adipokine profiles by downregulating proinflammatory markers such as PAI-1, leptin, TNF-α, STAMP2, F4/80, resistin, and MCP-1, and upregulating the insulin-sensitive transporter GLUT4 and the anti-inflammatory adiponectin (p < 0.05). Our findings suggest that Lactobacillus sakei Probio65 and Lactobacillus plantarum Probio-093 are promising agents for microbiome-targeted anti-obesity therapies, offering the effective mitigation of obesity and improvement in adipocyte function in a murine model.

6.
J Anim Sci Technol ; 66(1): 178-203, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38618031

RESUMO

Constipation, which refers to difficulties in defecation and infrequent bowel movement in emptying the gastrointestinal system that ultimately produces hardened fecal matters, is a health concern in livestock and aging animals. The present study aimed to evaluate the potential effects of dairy-isolated lactic acid bacteria (LAB) strains to alleviate constipation as an alternative therapeutic intervention for constipation treatment in the aging model. Rats were aged via daily subcutaneous injection of D-galactose (600 mg/body weight [kg]), prior to induction of constipation via oral administration of loperamide hydrochloride (5 mg/body weight [kg]). LAB strains (L. fermentum USM 4189 or L. plantarum USM 4187) were administered daily via oral gavage (1 × 10 Log CFU/day) while the control group received sterile saline. Aged rats as shown with shorter telomere lengths exhibited increased fecal bulk and soften fecal upon administration of LAB strains amid constipation as observed using the Bristol Stool Chart, accompanied by a higher fecal moisture content as compared to the control (p < 0.05). Fecal water-soluble metabolite profiles showed a reduced concentration of threonine upon administration of LAB strains compared to the control (p < 0.05). Histopathological analysis also showed that the administration of LAB strains contributed to a higher colonic goblet cell count as compared to the control (p < 0.05). The present study illustrates the potential of dairy-sourced LAB strains as probiotics to ameliorate the adverse effect of constipation amid aging, and as a potential dietary intervention strategy for dairy foods including yogurt and cheese.

7.
Pharmaceutics ; 15(4)2023 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-37111565

RESUMO

Candida albicans and Staphylococcus aureus, representing two different kingdoms, are the most frequently isolated pathogens from invasive infections. Their pathogenic attributes, combined with drug resistance, make them a major threat and a challenge to successful treatments, mainly when involved in polymicrobial biofilm-associated infections. In the present study, we investigated the antimicrobial potential of Lactobacillus metabolite extracts (LMEs) purified from cell-free supernatant of four Lactobacillus strains (KAU007, KAU0010, KAU0021, and Pro-65). Furthermore, LME obtained from the strain KAU0021 (LMEKAU0021), being the most effective, was analyzed for its anti-biofilm property against mono- and polymicrobial biofilms formed by C. albicans and S. aureus. The impact of LMEKAU0021 on membrane integrity in single and mixed culture conditions was also evaluated using propidium iodide. The MIC values recorded for LMEKAU0021 was 406 µg/mL, 203 µg/mL, and 406 µg/mL against planktonic cells of C. albicans SC5314, S. aureus and polymicrobial culture, respectively. The LMEKAU0021 at sub-MIC values potentially abrogates both biofilm formation as well as 24 h mature mono- and polymicrobial biofilms. These results were further validated using different microscopy and viability assays. For insight mechanism, LMEKAU0021 displayed a strong impact on cell membrane integrity of both pathogens in single and mixed conditions. A hemolytic assay using horse blood cells at different concentrations of LMEKAU0021 confirmed the safety of this extract. The results from this study correlate the antimicrobial and anti-biofilm properties of lactobacilli against bacterial and fungal pathogens in different conditions. Further in vitro and in vivo studies determining these effects will support the aim of discovering an alternative strategy for combating serious polymicrobial infections caused by C. albicans and S. aureus.

8.
Food Sci Biotechnol ; 32(4): 471-480, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36911325

RESUMO

The aim of this study was to investigate the different immunological and antimicrobial properties of breast milk from women with (W) or without (WO) vaginal yeast infections during pregnancy in 85 lactating women (W, n = 43; WO, n = 42). Concentrations of IL-10, IgA, IgM, IgG, EGF, and TGF-α were similar in both groups. However, breast milk of women aged below 31 years old from the W-group showed higher concentration of EGF than the WO-group (p = 0.031). Breast milk from WO-group exhibited higher anti-Candida properties than W-group, both via growth inhibition and aggregation of yeast cells (p < 0.001). Correlation analysis showed that breast milk concentration of TGF-α positively correlated with concentrations of IL-10 (p = 0.001) and IgA (p = 0.021) in the W-group. Data from our present study shows that although breast milk from women with vaginal infections during pregnancy may not sufficiently hinder Candida growth, other immuno-modulatory bioactives may substitute for such a protective effect.

9.
Prev Nutr Food Sci ; 28(3): 293-301, 2023 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-37842246

RESUMO

Skin aging, which affects all living organisms, is associated with oxidative stress. Probiotics exhibit antioxidant properties by producing reactive metabolites that counter oxidative stress. We hypothesized that Limosilactobacillus fermentum USM 4189 (LF 4189) has antioxidative properties and may prevent skin aging. In the present study, we used a D-galactose senescence-induced rat model to evaluate the potential antioxidative capability of LF 4189. The results indicated that rats administered LF 4189 exhibited increased plasma antioxidative activity (P=0.004), lipid peroxidation capacity (P=0.007), and skin elasticity compared with untreated aged rats (P=0.005). LF 4189 prevented telomere length shortening (P<0.05), indicating the potential to prevent senescence. A higher apoptotic activity was observed in old rats compared with young rats, whereas LF 4189 reduced the expression of four antioxidative enzyme genes that function as radical scavengers (all P<0.05), suggesting that the LF 4189 group had a reduced need to scavenge free radicals. Our findings indicate the potential of probiotics, such as LF 4189, as an anti-aging dietary intervention with antioxidant potential to improve skin health.

10.
Prev Nutr Food Sci ; 28(1): 1-9, 2023 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-37066035

RESUMO

We previously reported that breast milk from women with (W) or without (WO) vaginal yeast infection during pregnancy differs in its immunological and antimicrobial properties, especially against pathogenic vaginal Candida sp.. Here, we investigated the differences in microbiota profiles of breast milk from these groups. Seventy-two breast milk samples were collected from lactating mothers (W, n=37; WO, n=35). The DNA of bacteria was extracted from each breast milk sample for microbiota profiling by 16S rRNA gene sequencing. Breast milk from the W-group exhibited higher alpha diversity than that from the WO-group across different taxonomic levels of class (P=0.015), order (P=0.011), family (P=0.020), and genus (P=0.030). Compositional differences between groups as determined via beta diversity showed marginal differences at taxonomic levels of phylum (P=0.087), family (P=0.064), and genus (P=0.067). The W-group showed higher abundances of families Moraxellaceae (P=0.010) and Xanthomonadaceae (P=0.008), and their genera Acinetobacter (P=0.015), Enhydrobacter (P=0.015), and Stenotrophomonas (P=0.007). Meanwhile, the WO-group showed higher abundances of genus Staphylococcus (P=0.046) and species Streptococcus infantis (P=0.025). This study shows that, although breast milk composition is affected by vaginal infection during pregnancy, this may not pose a threat to infant growth and development.

11.
Vaccines (Basel) ; 10(12)2022 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-36560517

RESUMO

In the three years since the first outbreak of COVID-19 in 2019, the SARS-CoV-2 virus has continued to be prevalent in our community. It is believed that the virus will remain present, and be transmitted at a predictable rate, turning endemic. A major challenge that leads to this is the constant yet rapid mutation of the virus, which has rendered vaccination and current treatments less effective. In this study, the Lactobacillus sakei Probio65 extract (P65-CFS) was tested for its safety and efficacy in inhibiting SARS-CoV-2 replication. Viral load quantification by RT-PCR showed that the P65-CFS inhibited SARS-CoV-2 replication in human embryonic kidney (HEK) 293 cells in a dose-dependent manner, with 150 mg/mL being the most effective concentration (60.16% replication inhibition) (p < 0.05). No cytotoxicity was inflicted on the HEK 293 cells, human corneal epithelial (HCE) cells, or human cervical (HeLa) cells, as confirmed by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay. The P65-CFS (150 mg/mL) also reduced 83.40% of reactive oxidizing species (ROS) and extracellular signal-regulated kinases (ERK) phosphorylation in virus-infected cells, both of which function as important biomarkers for the pathogenesis of SARS-CoV-2. Furthermore, inflammatory markers, including interferon-α (IFN-α), IFN-ß, and interleukin-6 (IL-6), were all downregulated by P65-CFS in virus-infected cells as compared to the untreated control (p < 0.05). It was conclusively found that L. sakei Probio65 showed notable therapeutic efficacy in vitro by controlling not only viral multiplication but also pathogenicity; this finding suggests its potential to prevent severe COVID-19 and shorten the duration of infectiousness, thus proving useful as an adjuvant along with the currently available treatments.

12.
Toxics ; 10(3)2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-35324742

RESUMO

The discovery of biomarkers for assessing soil health requires the exploration of organisms that can explain the core functions of soil and identification of species with major roles in these functions. However, identifying specific keystone markers within the soil microbiota is challenging. Next-generation sequencing (NGS)-based molecular-biological methods have revealed information on soil biodiversity; however, whether this biodiversity is related to soil health remains unclear. In this study, we performed NGS on grassland surface soil to compare the prokaryotic and eukaryotic genetic diversity to determine the chemical soil quality and examined markers associated with soil health. Microorganisms associated with the nitrogen cycle, bioremediation, plant pathogenicity, antibiotic production, and material degradation showed potential for use as markers. To propose a framework for soil health assessment, we not only used traditional indicators, such as chemical and physical measures, but also assessed metagenomics data of soil by land use to identify the major factors influencing the microbial structure in soil. Moreover, major keystone species were identified. Furthermore, the microbial genetic diversity of generally healthy surface soil, such as forests, farmland, and parks, was determined. These findings provide basic data for exploring soil health-related biomarkers.

13.
Pharmaceutics ; 14(12)2022 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-36559194

RESUMO

Streptococcus pyogenes is one of the most common bacteria causing sinusitis in children and adult patients. Probiotics are known to cause antagonistic effects on S. pyogenes growth and biofilm formation. In the present study, we demonstrated the anti-biofilm and anti-virulence properties of Lactiplantibacillus plantarum KAU007 against S. pyogenes ATCC 8668. The antibacterial potential of L. plantarum KAU007 metabolite extract (LME) purified from the cell-free supernatant of L. plantarum KAU007 was evaluated in terms of minimum inhibitory concentrations (MIC) and minimum bactericidal concentrations (MBC). LME was further analyzed for its anti-biofilm potential using crystal violet assay and microscopic examination. Furthermore, the effect of LME was tested on the important virulence attributes of S. pyogenes, such as secreted protease production, hemolysis, extracellular polymeric substance production, and cell surface hydrophobicity. Additionally, the impact of LME on the expression of genes associated with biofilm formation and virulence attributes was analyzed using qPCR. The results revealed that LME significantly inhibited the growth and survival of S. pyogenes at a low concentration (MIC, 9.76 µg/mL; MBC, 39.06 µg/mL). Furthermore, LME inhibited biofilm formation and mitigated the production of extracellular polymeric substance at a concentration of 4.88 µg/mL in S. pyogenes. The results obtained from qPCR and biochemical assays advocated that LME suppresses the expression of various critical virulence-associated genes, which correspondingly affect various pathogenicity markers and were responsible for the impairment of virulence and biofilm formation in S. pyogenes. The non-hemolytic nature of LME and its anti-biofilm and anti-virulence properties against S. pyogenes invoke further investigation to study the role of LME as an antibacterial agent to combat streptococcal infections.

14.
Vaccines (Basel) ; 9(10)2021 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-34696175

RESUMO

In response to the ongoing COVID-19 pandemic, the global effort to develop high efficacy countermeasures to control the infection are being conducted at full swing. While the efficacy of vaccines and coronavirus drugs are being tested, the microbiome approach represents an alternative pathophysiology-based approach to prevent the severity of the infection. In the current study, we evaluated the action of a novel probiotic Lactobacillus plantarum Probio-88 against SARS-COV-2 replication and immune regulation using an in vitro and in silico study. The results showed that extract from this strain (P88-CFS) significantly inhibited the replication of SARS-COV-2 and the production of reactive oxygen species (ROS) levels. Furthermore, compared with infected cells, P88-CFS treated cells showed a significant reduction in inflammatory markers such as IFN-α, IFN-ß, and IL-6. Using an in silico molecular docking approach, it was postulated that the antiviral activity of L. plantarum Probio-88 was derived from plantaricin E (PlnE) and F (PlnF). The high binding affinity and formation of hydrogen bonding indicated that the association of PlnE and PlnF on SARS-COV-2 helicase might serve as a blocker by preventing the binding of ss-RNA during the replication of the virus. In conclusion, our study substantiated that P88-CFS could be used as an integrative therapeutic approach along with vaccine to contain the spread of the highly infectious pathogen and possibly its variants.

15.
Toxics ; 9(12)2021 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-34941754

RESUMO

Soil washing and landfarming processes are widely used to remediate total petroleum hydrocarbon (TPH)-contaminated soil, but the impact of these processes on soil bacteria is not well understood. Four different states of soil (uncontaminated soil (control), TPH-contaminated soil (CS), after soil washing (SW), and landfarming (LF)) were collected from a soil remediation facility to investigate the impact of TPH and soil remediation processes on soil bacterial populations by metagenomic analysis. Results showed that TPH contamination reduced the operational taxonomic unit (OTU) number and alpha diversity of soil bacteria. Compared to SW and LF remediation techniques, LF increased more bacterial richness and diversity than SW, indicating that LF is a more effective technique for TPH remediation in terms of microbial recovery. Among different bacterial species, Proteobacteria were the most abundant in all soil groups followed by Actinobacteria, Acidobacteria, and Firmicutes. For each soil group, the distribution pattern of the Proteobacteria class was different. The most abundant classed were Alphaproteobacteria (16.56%) in uncontaminated soils, Deltaproteobacteria (34%) in TPH-contaminated soils, Betaproteobacteria (24%) in soil washing, and Gammaproteobacteria (24%) in landfarming, respectively. TPH-degrading bacteria were detected from soil washing (23%) and TPH-contaminated soils (21%) and decreased to 12% in landfarming soil. These results suggest that soil pollution can change the diversity of microbial groups and different remediation techniques have varied effective ranges for recovering bacterial communities and diversity. In conclusion, the landfarming process of TPH remediation is more advantageous than soil washing from the perspective of bacterial ecology.

16.
Biology (Basel) ; 10(4)2021 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-33924088

RESUMO

Obesity caused by a high-fat diet (HFD) affects gut microbiota linked to the risk of type-2 diabetes (T2D). This study evaluates live cells and ethanolic extract (SEL) of Lactobacillus sakei Probio65 and Lactobacillus plantarum Probio-093 as natural anti-diabetic compounds. In-vitro anti-diabetic effects were determined based on the inhibition of α-glucosidase and α-amylase enzymes. The SEL of Probio65 and Probio-093 significantly retarded α-glucosidase and α-amylase enzymes (p < 0.05). Live Probio65 and Probio-093 inhibited α-glucosidase and α-amylase, respectively (p < 0.05). In mice fed with a 45% kcal high-fat diet (HFD), the SEL and live cells of both strains reduced body weight significantly compared to HFD control (p < 0.05). Probio-093 also improved blood glucose level compared to control (p < 0.05). The gut microbiota modulatory effects of lactobacilli on HFD-induced diabetic mice were analyzed with qPCR method. The SEL and live cells of both strains reduced phyla Deferribacteres compared to HFD control (p < 0.05). The SEL and live cells of Probio-093 promoted more Actinobacteria (phyla), Bifidobacterium, and Prevotella (genus) compared to control (p < 0.05). Both strains exerted metabolic-modulatory effects, with strain Probio-093 showing more prominent alteration in gut microbiota, substantiating the role of probiotics in gut microbiome modulations and anti-diabetic effect. Both lactobacilli are potential candidates to lessen obesity-linked T2D.

17.
Probiotics Antimicrob Proteins ; 13(2): 315-326, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-32949011

RESUMO

Several studies suggest that probiotics might be useful in the management of atopic dermatitis (AD). However, the efficacy and comparison between both the administration of viable and non-viable probiotics on alleviation of AD is not well studied. Therefore, the purpose of this study was to evaluate the effect of L. sakei proBio65 live and dead cells when administered (1 × 1010 cells/day) for 12 weeks to children and adolescents (aged 3 to 18) with atopic dermatitis. In this randomized double-blind, placebo-controlled study, ninety patients were recruited and randomly allocated to either the L. sakei proBio65 live cells, L. sakei proBio65 dead cells, or placebo groups. Assessment of efficacy was based on the change in SCORing Atopic Dermatitis (SCORAD) score, Investigators Global Assessment (IGA) score, serum inflammatory markers such as the serum eosinophil (count), IgE, eosinophil cationic protein (ECP), CCL17 (thymus and activation-regulated chemokine [TARC]), and CCL27 (cutaneous T cell-attracting chemokine [CTACK]), and changes in skin condition (moisture and sebum) at baseline, week 6 and week 12. The SCORAD total score decreased in the live cells (p = 0.0015) and dead cell group (p = 0.0017) from the baseline after 12 weeks, whereas there were no significant changes in the placebo group when compared with baseline. The skin sebum content increased in both the live cell (p < 0.0001) and the dead cell group (p < 0.0001), suggesting potential improvements in skin barrier functions. Current data suggested a positive improvement in alleviation of AD symptoms upon oral administration of L. sakei proBio65 in both viable and non-viable forms.


Assuntos
Dermatite Atópica , Latilactobacillus sakei , Probióticos/uso terapêutico , Administração Oral , Adolescente , Criança , Pré-Escolar , Dermatite Atópica/terapia , Humanos
18.
Trop Anim Health Prod ; 42(8): 1855-60, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20623187

RESUMO

A total of 310 bacterial strains isolated from the porcine gastrointestinal tract were tested for their activity against transmissible gastroenteritis (TGE) coronavirus and other enteric pathogens. Based on activity, the strains Probio-38 and Probio-37 were selected as potential probiotics and identified as Lactobacillus plantarum Probio-38 and Lactobacillus salivarius Probio-37 respectively by 16S rRNA gene sequencing. Supernatants of these strains inhibited TGE coronavirus in vitro in ST cells, without any cytopathic effect even after 72 h of incubation. Both the strains exhibited high survival in synthetic gastric juice. The strains were resistant to 5% porcine bile and exhibited antimicrobial activity against all the 13 enteric bacterial pathogens tested. These strains also exhibited resistance to most of the antibiotics analyzed. The inhibition of transmissible gastroenteritis coronavirus and enteric bacterial pathogens as well as the bile tolerance, high survival in gastric juice, and the antibiotic resistance indicate that the two isolated bacterial strains are ideal probiotic candidates for animal application after proper in vivo experiments.


Assuntos
Gastroenterite Suína Transmissível/tratamento farmacológico , Trato Gastrointestinal/microbiologia , Lactobacillus plantarum/genética , Probióticos/farmacologia , Sus scrofa/microbiologia , Vírus da Gastroenterite Transmissível/efeitos dos fármacos , Animais , Sequência de Bases , Farmacorresistência Bacteriana Múltipla/genética , Suco Gástrico/microbiologia , Gastroenterite Suína Transmissível/microbiologia , Dados de Sequência Molecular , Probióticos/uso terapêutico , RNA Ribossômico 16S/genética , Análise de Sequência de DNA/veterinária , Suínos
19.
Saudi J Biol Sci ; 27(1): 261-270, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31889846

RESUMO

This study underpins the therapeutic potential of SEL001, a bioactive product isolated from Lactobacillus sakei probio65, in terms of its anti-inflammatory properties and its effect on gut-microbiota in a TNBS-induced ulcerative colitis mouse model. Ulcerative colitis was developed in mice by intra rectal administration of trinitrobenzene sulfonic acid. Bioactive product SEL001 (50 mg/kg b.w.) was administered orally. Myeloperoxidase activity was measured using 3,3', 5,5'-tetramethylbenzidine. The entire colon was sampled for post-mortem clinical assessment. Colonic injury was assessed through histological and histomorphometric examinations. The 454 pyrosequencing and QIIME pipeline were used for gut microbiota analysis and statistical analysis were conducted using R. mRNA extraction from colon tissue and RT-PCR approaches were employed to determine the changes in the level of specific biomarker genes associated with UC. The results depict that SEL001 significantly lowered pro-inflammatory cytokines, including CD4, TNF-α, and interleukin-6. Examination of clinical and histopathological traits revealed that SEL001 was effective and potent in reducing the inflammatory signatures of UC to a similar extent as did by the standard drug mesalamine (5-ASA). Pyro-sequencing 16S data revealed that the reduction in the major member of phylum Firmicutes, which has been previously associated with a higher risk of UC. The SEL001, an anti-inflammatory bioactive product originated from a probiotic strain L. sakei probio65 could be an alternative therapeutic agent for treatment of UC.

20.
J Bacteriol ; 190(8): 3093-4, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18281406

RESUMO

Leuconostoc citreum is one of the most prevalent lactic acid bacteria during the manufacturing process of kimchi, the best-known Korean traditional dish. We have determined the complete genome sequence of L. citreum KM20. It consists of a 1.80-Mb chromosome and four circular plasmids and reveals genes likely involved in kimchi fermentation and its probiotic effects.


Assuntos
DNA Bacteriano/genética , Genoma Bacteriano , Leuconostoc/genética , Sequência de Bases , Cromossomos Bacterianos , Microbiologia de Alimentos , Coreia (Geográfico) , Dados de Sequência Molecular , Plasmídeos , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA