Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
ACS Omega ; 9(11): 13418-13426, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38524497

RESUMO

The detection of prothrombotic markers is crucial for understanding thromboembolism and assessing the effectiveness of anticoagulant drugs. α-Thrombin is a marker that plays a critical role in the coagulation cascade process. However, the detection of this enzymatic molecule was hindered by the absence of an efficient modality in the clinical environment. Previously, we reported that one α-thrombin interacts with two α-chains of glycoprotein Ib (GPIbα), i.e., multivalent protein binding (MPB), using bioresponsive hydrogel nanoparticles (nanogels) and optical microscopy. In this study, we demonstrated that GPIbα-mediated platforms led to the highly sensitive and quantitative detection of α-thrombin in various diagnostic systems. Initially, a bioresponsive nanogel-based surface plasmon resonance (nSPR) assay was developed that responds to the MPB of α-thrombin to GPIbα. The use of GPIbα for the detection of α-thrombin was further validated using the enzyme-linked immunosorbent assay, which is a gold-standard protein detection technique. Additionally, GPIbα-functionalized latex beads were developed to perform latex agglutination (LA) assays, which are widely used with hospital diagnostic instruments. Notably, the nSPR and LA assays exhibited a nearly 1000-fold improvement in sensitivity for α-thrombin detection compared to our previous optical microscopy method. The superiority of our GPIbα-mediated platforms lies in their stability for α-thrombin detection through protein-protein interactions. By contrast, assays relying on α-thrombin enzymatic activity using substrates face the challenge of a rapid decrease in postsample collection. These results suggested that the MPB of α-thrombin to GPIbα is an ideal mode for clinical α-thrombin detection, particularly in outpatient settings.

2.
J Biomol Struct Dyn ; : 1-13, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38189319

RESUMO

Screening α-glucosidase inhibitors with novel structures is an important field in the development of anti-diabetic drugs due to their application in postprandial hyperglycemia control. Boldine is one of the potent natural antioxidants with a wide range of pharmacological activities. Virtual screening and biochemical inhibition kinetics combined with molecular dynamics simulations were conducted to verify the inactivation function of boldine on α-glucosidase. A series of inhibition kinetics and spectrometry detections were conducted to analyze the α-glucosidase inhibition. Computational simulations of molecular dynamics/docking analyses were conducted to detect boldine docking sites' details and evaluate the key binding residues. Boldine displayed a typical reversible and mixed-type inhibition manner. Measurements of circular dichroism and fluorescence spectrum showed boldine changed the secondary structure and loosened the tertiary conformation of target α-glucosidase. The computational molecular dynamics showed that boldine could block the active pocket site through close interaction with binding key residues, and two phenolic hydroxyl groups of boldine play a core function in α-glucosidase inhibition via ligand binding. This investigation reveals the boldine function on interaction with the α-glucosidase active site, which provides a new inhibitor candidate.Communicated by Ramaswamy H. Sarma.

3.
Adv Healthc Mater ; 13(19): e2400235, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38569198

RESUMO

Cancer immunotherapy by immune checkpoint inhibitors (ICIs) acts on antitumor responses by stimulating the immune system to attack cancer cells. However, this powerful therapy is hampered by its high treatment cost and limited efficacy. Here, it is shown that the development of an antibody-conjugated nanogel (ANGel), consisting of N-isopropylacrylamide-co-acrylic acid and antibody-binding protein (protein A), potentiates the efficacy of two ICI monoclonal antibodies (mAbs) (cytotoxic-T-lymphocyte-associated antigen 4 and programmed death ligand-1 mAbs). Compared with mAb treatment alone, treatment with a bispecific ANGel surface-conjugated with the mAbs significantly decreases both the survival of Michigan Cancer Foundation-7 (MCF-7) and M D Anderson-Metastatic Breast-231 (MDA-MB-231) breast cancer cells in vitro and the burden of 4T1-luciferase-2-derived orthotopic syngeneic tumors in vivo. The bispecific ANGel is also more potent than the conventional treatment at prolonging survival in animals with triple-negative breast cancer. The advantage of the bispecific ANGel over other engineered bispecific antibodies arises not only from the adaptability to link multiple antibodies quickly and easily, but also from the capability to maintain the anticancer effect steadily at subcutaneously delivered tumor site. This finding has an important implication for cancer immunotherapy, opening a new paradigm to treat solid tumors.


Assuntos
Inibidores de Checkpoint Imunológico , Imunoterapia , Nanogéis , Animais , Humanos , Imunoterapia/métodos , Feminino , Camundongos , Nanogéis/química , Linhagem Celular Tumoral , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/química , Camundongos Endogâmicos BALB C , Anticorpos Monoclonais/química , Anticorpos Monoclonais/farmacologia , Antígeno CTLA-4/antagonistas & inibidores , Antígeno CTLA-4/imunologia , Antígeno B7-H1/antagonistas & inibidores , Antígeno B7-H1/imunologia , Neoplasias de Mama Triplo Negativas/terapia , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/imunologia , Células MCF-7 , Anticorpos Biespecíficos/farmacologia , Anticorpos Biespecíficos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA