Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 100
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Biol Chem ; 299(2): 102789, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36509144

RESUMO

α-Isopropylmalate synthase (IPMS) catalyzes the first step in leucine (Leu) biosynthesis and is allosterically regulated by the pathway end product, Leu. IPMS is a dimeric enzyme with each chain consisting of catalytic, accessory, and regulatory domains, with the accessory and regulatory domains of each chain sitting adjacent to the catalytic domain of the other chain. The IPMS crystal structure shows significant asymmetry because of different relative domain conformations in each chain. Owing to the challenges posed by the dynamic and asymmetric structures of IPMS enzymes, the molecular details of their catalytic and allosteric mechanisms are not fully understood. In this study, we have investigated the allosteric feedback mechanism of the IPMS enzyme from the bacterium that causes meningitis, Neisseria meningitidis (NmeIPMS). By combining molecular dynamics simulations with small-angle X-ray scattering, mutagenesis, and heterodimer generation, we demonstrate that Leu-bound NmeIPMS is in a rigid conformational state stabilized by asymmetric interdomain polar interactions. Furthermore, we found removing these polar interactions by mutagenesis impaired the allosteric response without compromising Leu binding. Our results suggest that the allosteric inhibition of NmeIPMS is achieved by restricting the flexibility of the accessory and regulatory domains, demonstrating that significant conformational flexibility is required for catalysis.


Assuntos
2-Isopropilmalato Sintase , Biocatálise , Leucina , Neisseria meningitidis , Domínios Proteicos , 2-Isopropilmalato Sintase/química , 2-Isopropilmalato Sintase/genética , 2-Isopropilmalato Sintase/metabolismo , Regulação Alostérica , Domínio Catalítico , Leucina/biossíntese , Leucina/química , Leucina/metabolismo , Neisseria meningitidis/enzimologia , Neisseria meningitidis/metabolismo , Simulação de Dinâmica Molecular , Espalhamento a Baixo Ângulo , Difração de Raios X , Multimerização Proteica , Mutagênese , Maleabilidade
2.
J Am Chem Soc ; 145(5): 2754-2758, 2023 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-36710518

RESUMO

The significant structural diversity and potent bioactivity of the fungal indole diterpenes (IDTs) has attracted considerable interest in their biosynthesis. Although substantial skeletal diversity is generated by the action of noncanonical terpene cyclases, comparatively little is known about these enzymes, particularly those involved in the generation of the subgroup containing emindole SA and DA, which show alternate terpenoid skeletons. Here, we describe the IDT biosynthetic machinery generating these unusual IDT architectures from Aspergillus striatus and Aspergillus desertorum. The function of four putative cyclases was interrogated via heterologous expression. Two specific cyclases were identified that catalyze the formation of epimers emindole SA and DA from A. striatus and A. desertorum, respectively. These cyclases are both clustered along with all the elements required for basic IDT biosynthesis yet catalyze an unusual Markovnikov-like cyclization cascade with alternate stereochemical control. Their identification reveals that these alternate architectures are not generated by mechanistically sloppy or promiscuous enzymes, but by cyclases capable of delivering precise regio- and stereospecificities.


Assuntos
Diterpenos , Diterpenos/química , Terpenos/metabolismo , Indóis/química , Ciclização
3.
Biochemistry ; 61(17): 1883-1893, 2022 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-35969806

RESUMO

Enzyme-catalyzed hydrolysis is a fundamental chemical transformation involved in many essential metabolic processes. The enzyme 5'-methylthioadenosine/S-adenosylhomocysteine nucleosidase (MTAN) catalyzes the hydrolysis of adenosine-containing metabolites in cysteine and methionine metabolism. Although MTAN enzymes contain highly similar active site architecture and generally follow a dissociative (DN*AN) reaction mechanism, substantial differences in reaction rates and chemical transition state structures have been reported. To understand how subtle changes in sequence and structure give rise to differences in chemistry between homologous enzymes, we have probed the reaction coordinates of two MTAN enzymes using quantum mechanical/molecular mechanical and molecular dynamics simulations combined with experimental methods. We show that the transition state structure and energy are significantly affected by the recruitment and positioning of the catalytic water molecule and that subtle differences in the noncatalytic active site residues alter the environment of the catalytic water, leading to changes in the reaction coordinate and observed reaction rate.


Assuntos
N-Glicosil Hidrolases , Água , Catálise , Desoxiadenosinas , Hidrólise , N-Glicosil Hidrolases/química , Purina-Núcleosídeo Fosforilase , Tionucleosídeos
4.
J Biol Chem ; 297(3): 101038, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34343567

RESUMO

Modular protein assembly has been widely reported as a mechanism for constructing allosteric machinery. Recently, a distinctive allosteric system has been identified in a bienzyme assembly comprising a 3-deoxy-d-arabino heptulosonate-7-phosphate synthase (DAH7PS) and chorismate mutase (CM). These enzymes catalyze the first and branch point reactions of aromatic amino acid biosynthesis in the bacterium Prevotella nigrescens (PniDAH7PS), respectively. The interactions between these two distinct catalytic domains support functional interreliance within this bifunctional enzyme. The binding of prephenate, the product of CM-catalyzed reaction, to the CM domain is associated with a striking rearrangement of overall protein conformation that alters the interdomain interactions and allosterically inhibits the DAH7PS activity. Here, we have further investigated the complex allosteric communication demonstrated by this bifunctional enzyme. We observed allosteric activation of CM activity in the presence of all DAH7PS substrates. Using small-angle X-ray scattering (SAXS) experiments, we show that changes in overall protein conformations and dynamics are associated with the presence of different DAH7PS substrates and the allosteric inhibitor prephenate. Furthermore, we have identified an extended interhelix loop located in CM domain, loopC320-F333, as a crucial segment for the interdomain structural and catalytic communications. Our results suggest that the dual-function enzyme PniDAH7PS contains a reciprocal allosteric system between the two enzymatic moieties as a result of this bidirectional interdomain communication. This arrangement allows for a complex feedback and feedforward system for control of pathway flux by connecting the initiation and branch point of aromatic amino acid biosynthesis.


Assuntos
3-Desoxi-7-Fosfo-Heptulonato Sintase/química , 3-Desoxi-7-Fosfo-Heptulonato Sintase/metabolismo , Aminoácidos Aromáticos/biossíntese , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Prevotella nigrescens/metabolismo , 3-Desoxi-7-Fosfo-Heptulonato Sintase/genética , Regulação Alostérica , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Vias Biossintéticas , Inibidores Enzimáticos/química , Inibidores Enzimáticos/metabolismo , Prevotella nigrescens/química , Prevotella nigrescens/enzimologia , Prevotella nigrescens/genética , Domínios Proteicos , Espalhamento a Baixo Ângulo , Alinhamento de Sequência
5.
Angew Chem Int Ed Engl ; 61(49): e202213364, 2022 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-36199176

RESUMO

Nodulisporic acids (NAs) are structurally complex potent antiinsectan indole diterpenes. We previously reported the biosynthetic gene cluster for these metabolites in Hypoxylon pulicicidum and functionally characterised the first five steps of the biosynthetic pathway. Here we reveal a highly complex biosynthetic array, furnishing multiple end products through expression of cluster components in Penicillium paxilli. We show that seven additional cluster-encoded gene products comprise the biosynthetic machinery that elaborate precursor NAF in this highly branched pathway. The combined action of these enzymes delivers 37 NA congeners including four major end products, NAA, NAA1 , NAA2 and NAA4 . The plethora of intermediates arises due to modification of the carboxylated prenyl tail by a single promiscuous P450 monooxygenase, NodJ, a pivotal branchpoint enzyme which produces four distinct biosynthetic products giving rise to the complex metabolic grid that characterises NA biosynthesis.


Assuntos
Diterpenos , Oxigenases de Função Mista , Oxigenases de Função Mista/genética , Oxigenases de Função Mista/metabolismo , Família Multigênica , Diterpenos/metabolismo , Vias Biossintéticas
6.
J Biol Chem ; 295(19): 6252-6262, 2020 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-32217694

RESUMO

Allostery exploits the conformational dynamics of enzymes by triggering a shift in population ensembles toward functionally distinct conformational or dynamic states. Allostery extensively regulates the activities of key enzymes within biosynthetic pathways to meet metabolic demand for their end products. Here, we have examined a critical enzyme, 3-deoxy-d-arabino-heptulosonate 7-phosphate synthase (DAH7PS), at the gateway to aromatic amino acid biosynthesis in Mycobacterium tuberculosis, which shows extremely complex dynamic allostery: three distinct aromatic amino acids jointly communicate occupancy to the active site via subtle changes in dynamics, enabling exquisite fine-tuning of delivery of these essential metabolites. Furthermore, this allosteric mechanism is co-opted by pathway branchpoint enzyme chorismate mutase upon complex formation. In this study, using statistical coupling analysis, site-directed mutagenesis, isothermal calorimetry, small-angle X-ray scattering, and X-ray crystallography analyses, we have pinpointed a critical node within the complex dynamic communication network responsible for this sophisticated allosteric machinery. Through a facile Gly to Pro substitution, we have altered backbone dynamics, completely severing the allosteric signal yet remarkably, generating a nonallosteric enzyme that retains full catalytic activity. We also identified a second residue of prime importance to the inter-enzyme communication with chorismate mutase. Our results reveal that highly complex dynamic allostery is surprisingly vulnerable and provide further insights into the intimate link between catalysis and allostery.


Assuntos
3-Desoxi-7-Fosfo-Heptulonato Sintase/química , Proteínas de Bactérias/química , Mutação de Sentido Incorreto , Mycobacterium tuberculosis/enzimologia , 3-Desoxi-7-Fosfo-Heptulonato Sintase/genética , 3-Desoxi-7-Fosfo-Heptulonato Sintase/metabolismo , Regulação Alostérica , Substituição de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Catálise , Cristalografia por Raios X , Mycobacterium tuberculosis/genética
7.
Proc Natl Acad Sci U S A ; 115(12): 3006-3011, 2018 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-29507215

RESUMO

Most proteins comprise two or more domains from a limited suite of protein families. These domains are often rearranged in various combinations through gene fusion events to evolve new protein functions, including the acquisition of protein allostery through the incorporation of regulatory domains. The enzyme 3-deoxy-d-arabino-heptulosonate 7-phosphate synthase (DAH7PS) is the first enzyme of aromatic amino acid biosynthesis and displays a diverse range of allosteric mechanisms. DAH7PSs adopt a common architecture with a shared (ß/α)8 catalytic domain which can be attached to an ACT-like or a chorismate mutase regulatory domain that operates via distinct mechanisms. These respective domains confer allosteric regulation by controlling DAH7PS function in response to ligand Tyr or prephenate. Starting with contemporary DAH7PS proteins, two protein chimeras were created, with interchanged regulatory domains. Both engineered proteins were catalytically active and delivered new functional allostery with switched ligand specificity and allosteric mechanisms delivered by their nonhomologous regulatory domains. This interchangeability of protein domains represents an efficient method not only to engineer allostery in multidomain proteins but to create a new bifunctional enzyme.


Assuntos
3-Desoxi-7-Fosfo-Heptulonato Sintase/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Thermotoga maritima/metabolismo , 3-Desoxi-7-Fosfo-Heptulonato Sintase/química , 3-Desoxi-7-Fosfo-Heptulonato Sintase/genética , Regulação Alostérica , Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica , Regulação Enzimológica da Expressão Gênica , Domínios Proteicos , Thermotoga maritima/genética
8.
J Biol Chem ; 294(13): 4828-4842, 2019 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-30670586

RESUMO

Because of their special organization, multifunctional enzymes play crucial roles in improving the performance of metabolic pathways. For example, the bacterium Prevotella nigrescens contains a distinctive bifunctional protein comprising a 3-deoxy-d-arabino heptulosonate-7-phosphate synthase (DAH7PS), catalyzing the first reaction of the biosynthetic pathway of aromatic amino acids, and a chorismate mutase (CM), functioning at a branch of this pathway leading to the synthesis of tyrosine and phenylalanine. In this study, we characterized this P. nigrescens enzyme and found that its two catalytic activities exhibit substantial hetero-interdependence and that the separation of its two distinct catalytic domains results in a dramatic loss of both DAH7PS and CM activities. The protein displayed a unique dimeric assembly, with dimerization solely via the CM domain. Small angle X-ray scattering (SAXS)-based structural analysis of this protein indicated a DAH7PS-CM hetero-interaction between the DAH7PS and CM domains, unlike the homo-association between DAH7PS domains normally observed for other DAH7PS proteins. This hetero-interaction provides a structural basis for the functional interdependence between the two domains observed here. Moreover, we observed that DAH7PS is allosterically inhibited by prephenate, the product of the CM-catalyzed reaction. This allostery was accompanied by a striking conformational change as observed by SAXS, implying that altering the hetero-domain interaction underpins the allosteric inhibition. We conclude that for this C-terminal CM-linked DAH7PS, catalytic function and allosteric regulation appear to be delivered by a common mechanism, revealing a distinct and efficient evolutionary strategy to utilize the functional advantages of a bifunctional enzyme.


Assuntos
Alquil e Aril Transferases/química , Aminoácidos Aromáticos/biossíntese , Proteínas de Bactérias/química , Prevotella nigrescens/enzimologia , Alquil e Aril Transferases/genética , Alquil e Aril Transferases/metabolismo , Regulação Alostérica , Aminoácidos Aromáticos/química , Aminoácidos Aromáticos/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Catálise , Cristalografia por Raios X , Prevotella nigrescens/genética , Domínios Proteicos , Espalhamento a Baixo Ângulo , Difração de Raios X
9.
Genet Med ; 22(11): 1883-1886, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32606442

RESUMO

PURPOSE: To measure the prevalence of medically actionable pathogenic variants (PVs) among a population of healthy elderly individuals. METHODS: We used targeted sequencing to detect pathogenic or likely pathogenic variants in 55 genes associated with autosomal dominant medically actionable conditions, among a population of 13,131 individuals aged 70 or older (mean age 75 years) enrolled in the ASPirin in Reducing Events in the Elderly (ASPREE) trial. Participants had no previous diagnosis or current symptoms of cardiovascular disease, physical disability or dementia, and no current diagnosis of life-threatening cancer. Variant curation followed American College of Medical Genetics and Genomics/Association for Molecular Pathology (ACMG/AMP) standards. RESULTS: One in 75 (1.3%) healthy elderly individuals carried a PV. This was lower than rates reported from population-based studies, which have ranged from 1.8% to 3.4%. We detected 20 PV carriers for Lynch syndrome (MSH6/MLH1/MSH2/PMS2) and 13 for familial hypercholesterolemia (LDLR/APOB/PCSK9). Among 7056 female participants, we detected 15 BRCA1/BRCA2 PV carriers (1 in 470 females). We detected 86 carriers of PVs in lower-penetrance genes associated with inherited cardiac disorders. CONCLUSION: Medically actionable PVs are carried in a healthy elderly population. Our findings raise questions about the actionability of lower-penetrance genes, especially when PVs are detected in the absence of symptoms and/or family history of disease.


Assuntos
Neoplasias Colorretais Hereditárias sem Polipose , Pró-Proteína Convertase 9 , Idoso , Neoplasias Colorretais Hereditárias sem Polipose/genética , Feminino , Genes BRCA2 , Predisposição Genética para Doença , Humanos
10.
Biophys J ; 116(10): 1887-1897, 2019 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-31053263

RESUMO

Allosteric regulation plays an important role in the control of metabolic flux in biosynthetic pathways. In microorganisms, many enzymes in these pathways adopt different strategies of allostery to allow the tuning of their activities in response to metabolic demand. Thus, it is important to uncover the mechanism of allosteric signal transmission to fully comprehend the complex control of enzyme function and its evolution. ATP-phosphoribosyltransferase (ATP-PRT), as the first enzyme in the histidine biosynthetic pathway, is allosterically regulated by histidine and offers a good platform for the study of allostery. Two forms of ATP-PRT, namely long and short forms, were discovered that show different arrangements of their regulatory machinery. Crystal structures of the long-form ATP-PRT have revealed overall conformational changes in the inhibited state, but the observed changes in the active state are quite subtle, making the elucidation of its allosteric mechanism difficult. Here, we combine computational methods (ligand docking, quantum mechanics/molecular mechanics optimization, and molecular dynamic simulations) with experimental studies to probe the signal transmission between remote allosteric and active sites. Our results reveal that distinct conformational ensembles of the catalytic domain with different dynamic properties exist in the ligand-free and histidine-bound enzymes. These ensembles display different capabilities in supporting the catalytic and allosteric function of ATP-PRT. The findings give insight into the underlying mechanism of allostery and allow us to propose that the hinge twisting within the catalytic domain is the key for both enhancement of catalysis and provision of regulation in ATP-PRT enzymes.


Assuntos
ATP Fosforribosiltransferase/química , ATP Fosforribosiltransferase/metabolismo , Biocatálise , Histidina/biossíntese , Regulação Alostérica , Domínio Catalítico , Simulação de Dinâmica Molecular
11.
Biochem J ; 475(1): 247-260, 2018 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-29208762

RESUMO

Adenosine triphosphate (ATP) phosphoribosyltransferase (ATP-PRT) catalyses the first committed step of histidine biosynthesis in plants and microorganisms. Two forms of ATP-PRT have been reported, which differ in their molecular architecture and mechanism of allosteric regulation. The short-form ATP-PRT is a hetero-octamer, with four HisG chains that comprise only the catalytic domains and four separate chains of HisZ required for allosteric regulation by histidine. The long-form ATP-PRT is homo-hexameric, with each chain comprising two catalytic domains and a covalently linked regulatory domain that binds histidine as an allosteric inhibitor. Here, we describe a truncated long-form ATP-PRT from Campylobacter jejuni devoid of its regulatory domain (CjeATP-PRTcore). Results showed that CjeATP-PRTcore is dimeric, exhibits attenuated catalytic activity, and is insensitive to histidine, indicating that the covalently linked regulatory domain plays a role in both catalysis and regulation. Crystal structures were obtained for CjeATP-PRTcore in complex with both substrates, and for the first time, the complete product of the reaction. These structures reveal the key features of the active site and provide insights into how substrates move into position during catalysis.


Assuntos
ATP Fosforribosiltransferase/química , Monofosfato de Adenosina/química , Trifosfato de Adenosina/química , Proteínas de Bactérias/química , Campylobacter jejuni/enzimologia , ATP Fosforribosiltransferase/genética , ATP Fosforribosiltransferase/metabolismo , Monofosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Regulação Alostérica , Motivos de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Campylobacter jejuni/química , Domínio Catalítico , Clonagem Molecular , Cristalografia por Raios X , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Histidina/química , Histidina/metabolismo , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/metabolismo , Cinética , Modelos Moleculares , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidade por Substrato
12.
Proc Natl Acad Sci U S A ; 113(9): 2394-9, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26884182

RESUMO

Improved understanding of the relationship among structure, dynamics, and function for the enzyme phenylalanine hydroxylase (PAH) can lead to needed new therapies for phenylketonuria, the most common inborn error of amino acid metabolism. PAH is a multidomain homo-multimeric protein whose conformation and multimerization properties respond to allosteric activation by the substrate phenylalanine (Phe); the allosteric regulation is necessary to maintain Phe below neurotoxic levels. A recently introduced model for allosteric regulation of PAH involves major domain motions and architecturally distinct PAH tetramers [Jaffe EK, Stith L, Lawrence SH, Andrake M, Dunbrack RL, Jr (2013) Arch Biochem Biophys 530(2):73-82]. Herein, we present, to our knowledge, the first X-ray crystal structure for a full-length mammalian (rat) PAH in an autoinhibited conformation. Chromatographic isolation of a monodisperse tetrameric PAH, in the absence of Phe, facilitated determination of the 2.9 Å crystal structure. The structure of full-length PAH supersedes a composite homology model that had been used extensively to rationalize phenylketonuria genotype-phenotype relationships. Small-angle X-ray scattering (SAXS) confirms that this tetramer, which dominates in the absence of Phe, is different from a Phe-stabilized allosterically activated PAH tetramer. The lack of structural detail for activated PAH remains a barrier to complete understanding of phenylketonuria genotype-phenotype relationships. Nevertheless, the use of SAXS and X-ray crystallography together to inspect PAH structure provides, to our knowledge, the first complete view of the enzyme in a tetrameric form that was not possible with prior partial crystal structures, and facilitates interpretation of a wealth of biochemical and structural data that was hitherto impossible to evaluate.


Assuntos
Biopolímeros/química , Fenilalanina Hidroxilase/química , Animais , Cristalografia por Raios X , Modelos Moleculares , Conformação Proteica , Ratos
13.
Biochemistry ; 57(18): 2667-2678, 2018 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-29608284

RESUMO

The shikimate pathway is responsible for the biosynthesis of key aromatic metabolites in microorganisms and plants. The enzyme 3-deoxy-d- arabino-heptulosonate 7-phosphate synthase (DAH7PS) catalyzes the first step of the pathway and DAH7PSs are classified as either type I or type II. The DAH7PSs from Pseudomonas aeruginosa are of particular interest as open reading frames encoding four putative DAH7PS isoenzymes, two classified as type Iα and two classified as type II, have been identified. Here, the structure of a type II DAH7PS enzyme from P. aeruginosa (PAO1) has been determined at 1.54 Å resolution, in complex with its allosteric inhibitor tryptophan. Structural differences in the extra-barrel elements, when compared to other type II DAH7PS enzymes, directly relate to the formation of a distinct quaternary conformation with consequences for allosteric function and the control of flux to branching pathways. In contrast to the well-characterized Mycobacterium tuberculosis type II DAH7PS, which binds multiple allosteric inhibitors, this PaeDAH7PSPA2843 is observed to be modestly allosterically inhibited by a single aromatic amino acid, tryptophan. In addition, structures in complex with tyrosine or with no allosteric ligand bound were determined. These structures provide new insights into the linkages between the active and allosteric sites. With four putative DAH7PS enzymes, P. aeruginosa appears to have evolved control of shikimate pathway flux at the genetic level, rather than control by multiple allosteric effectors to a single type II DAH7PS, as in M. tuberculosis. Type II DAH7PSs, thus, appear to have a more varied evolutionary trajectory than previously indicated.


Assuntos
3-Desoxi-7-Fosfo-Heptulonato Sintase/química , Evolução Molecular , Pseudomonas aeruginosa/enzimologia , Ácido Chiquímico/metabolismo , 3-Desoxi-7-Fosfo-Heptulonato Sintase/genética , 3-Desoxi-7-Fosfo-Heptulonato Sintase/metabolismo , Regulação Alostérica/genética , Sítio Alostérico/genética , Sítios de Ligação , Cristalografia por Raios X , Redes e Vias Metabólicas/genética , Modelos Moleculares , Mycobacterium tuberculosis/enzimologia , Ligação Proteica , Pseudomonas aeruginosa/genética , Ácido Chiquímico/química , Triptofano/química
14.
Biochim Biophys Acta Bioenerg ; 1859(7): 482-490, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29621505

RESUMO

Type II NADH:quinone oxidoreductase (NDH-2) is a proposed drug-target of major pathogenic microorganisms such as Mycobacterium tuberculosis and Plasmodium falciparum. Many NDH-2 inhibitors have been identified, but rational drug development is impeded by the lack of information regarding their mode of action and associated inhibitor-bound NDH-2 structure. We have determined the crystal structure of NDH-2 complexed with a quinolone inhibitor 2-heptyl-4-hydroxyquinoline-N-oxide (HQNO). HQNO is nested into the slot-shaped tunnel of the Q-site, in which the quinone-head group is clamped by Q317 and I379 residues, and hydrogen-bonds to FAD. The interaction of HQNO with bacterial NDH-2 is very similar to the native substrate ubiquinone (UQ1) interactions in the yeast Ndi1-UQ1 complex structure, suggesting a conserved mechanism for quinone binding. Further, the structural analysis provided insight how modifications of quinolone scaffolds improve potency (e.g. quinolinyl pyrimidine derivatives) and suggests unexplored target space for the rational design of new NDH-2 inhibitors.


Assuntos
Quinolonas/química , Quinona Redutases/antagonistas & inibidores , Quinona Redutases/química , Bactérias/enzimologia , Sítios de Ligação , Cristalografia , Desenho de Fármacos , Ligação de Hidrogênio , Ubiquinona/química
15.
J Am Chem Soc ; 140(2): 582-585, 2018 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-29283570

RESUMO

Nodulisporic acids comprise a group of valuable indole diterpenes that exhibit potent insecticidal activities. We report the identification of a gene cluster in the genome of the filamentous fungus Hypoxylon pulicicidum (Nodulisporium sp.) that contains genes responsible for the biosynthesis of nodulisporic acids. Using Penicillium paxilli as a heterologous host, and through pathway reconstitution experiments, we identified the function of four genes involved in the biosynthesis of the nodulisporic acid core compound, nodulisporic acid F (NAF). Two of these genes (nodM and nodW) are especially significant as they encode enzymes with previously unreported functionality: nodM encodes a 3-geranylgeranylindole epoxidase capable of catalyzing only a single epoxidation step to prime formation of the distinctive ring structure of nodulisporic acids, and nodW encodes the first reported gene product capable of introducing a carboxylic acid moiety to an indole diterpene core structure that acts as a reactive handle for further modification. Here, we present the enzymatic basis for the biosynthetic branch point that gives rise to nodulisporic acids.


Assuntos
Fungos , Indóis/química , Fungos/genética , Fungos/metabolismo , Estrutura Molecular , Penicillium/química , Penicillium/genética , Penicillium/metabolismo
16.
Biochim Biophys Acta Proteins Proteom ; 1866(2): 264-274, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28844746

RESUMO

Phosphoribosyltransferases (PRTs) bind 5'-phospho-α-d-ribosyl-1'-pyrophosphate (PRPP) and transfer its phosphoribosyl group (PRib) to specific nucleophiles. Anthranilate PRT (AnPRT) is a promiscuous PRT that can phosphoribosylate both anthranilate and alternative substrates, and is the only example of a type III PRT. Comparison of the PRPP binding mode in type I, II and III PRTs indicates that AnPRT does not bind PRPP, or nearby metals, in the same conformation as other PRTs. A structure with a stereoisomer of PRPP bound to AnPRT from Mycobacterium tuberculosis (Mtb) suggests a catalytic or post-catalytic state that links PRib movement to metal movement. Crystal structures of Mtb-AnPRT in complex with PRPP and with varying occupancies of the two metal binding sites, complemented by activity assay data, indicate that this type III PRT binds a single metal-coordinated species of PRPP, while an adjacent second metal site can be occupied due to a separate binding event. A series of compounds were synthesized that included a phosphonate group to probe PRPP binding site. Compounds containing a "bianthranilate"-like moiety are inhibitors with IC50 values of 10-60µM, and Ki values of 1.3-15µM. Structures of Mtb-AnPRT in complex with these compounds indicate that their phosphonate moieties are unable to mimic the binding modes of the PRib or pyrophosphate moieties of PRPP. The AnPRT structures presented herein indicated that PRPP binds a surface cleft and becomes enclosed due to re-positioning of two mobile loops.


Assuntos
Antranilato Fosforribosiltransferase/química , Proteínas de Bactérias/química , Mycobacterium tuberculosis/enzimologia , Sítios de Ligação , Cristalografia por Raios X , Estrutura Secundária de Proteína
17.
Bioorg Med Chem Lett ; 28(13): 2239-2243, 2018 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-29859905

RESUMO

Energy generation is a promising area of drug discovery for both bacterial pathogens and parasites. Type II NADH dehydrogenase (NDH-2), a vital respiratory membrane protein, has attracted attention as a target for the development of new antitubercular and antimalarial agents. To date, however, no potent, specific inhibitors have been identified. Here, we performed a site-directed screening technique, tethering-fragment based drug discovery, against wild-type and mutant forms of NDH-2 containing engineered active-site cysteines. Inhibitory fragments displayed IC50 values between 3 and 110 µM against NDH-2 mutants. Possible binding poses were investigated by in silico modelling, providing a basis for optimisation of fragment binding and improved potency against NDH-2.


Assuntos
Proteínas de Bactérias/metabolismo , Desenho de Fármacos , Inibidores Enzimáticos/metabolismo , Proteínas de Membrana/metabolismo , NADH Desidrogenase/metabolismo , Bacillaceae/enzimologia , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Sítios de Ligação , Cisteína/química , Cisteína/genética , Inibidores Enzimáticos/química , Proteínas de Membrana/antagonistas & inibidores , Proteínas de Membrana/química , Proteínas de Membrana/genética , Simulação de Acoplamento Molecular , Mutagênese Sítio-Dirigida , Mutação , NADH Desidrogenase/antagonistas & inibidores , NADH Desidrogenase/química , NADH Desidrogenase/genética , Ligação Proteica
18.
J Biol Chem ; 291(42): 21836-21847, 2016 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-27502275

RESUMO

Multifunctional proteins play a variety of roles in metabolism. Here, we examine the catalytic function of the combined 3-deoxy-d-arabino heptulosonate-7-phosphate synthase (DAH7PS) and chorismate mutase (CM) from Geobacillus sp. DAH7PS operates at the start of the biosynthetic pathway for aromatic metabolites, whereas CM operates in a dedicated branch of the pathway for the biosynthesis of amino acids tyrosine and phenylalanine. In line with sequence predictions, the two catalytic functions are located in distinct domains, and these two activities can be separated and retain functionality. For the full-length protein, prephenate, the product of the CM reaction, acts as an allosteric inhibitor for the DAH7PS. The crystal structure of the full-length protein with prephenate bound and the accompanying small angle x-ray scattering data reveal the molecular mechanism of the allostery. Prephenate binding results in the tighter association between the dimeric CM domains and the tetrameric DAH7PS, occluding the active site and therefore disrupting DAH7PS function. Acquisition of a physical gating mechanism to control catalytic function through gene fusion appears to be a general mechanism for providing allostery for this enzyme.


Assuntos
3-Desoxi-7-Fosfo-Heptulonato Sintase/metabolismo , Corismato Mutase/metabolismo , 3-Desoxi-7-Fosfo-Heptulonato Sintase/genética , Regulação Alostérica , Aminoácidos Aromáticos/metabolismo , Corismato Mutase/genética , Cristalografia por Raios X , Geobacillus/enzimologia , Ácido Chiquímico/metabolismo
19.
Biochemistry ; 55(12): 1681-8, 2016 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-26881922

RESUMO

One of the critical variables that determine the rate of any reaction is temperature. For biological systems, the effects of temperature are convoluted with myriad (and often opposing) contributions from enzyme catalysis, protein stability, and temperature-dependent regulation, for example. We have coined the phrase "macromolecular rate theory (MMRT)" to describe the temperature dependence of enzyme-catalyzed rates independent of stability or regulatory processes. Central to MMRT is the observation that enzyme-catalyzed reactions occur with significant values of ΔCp(‡) that are in general negative. That is, the heat capacity (Cp) for the enzyme-substrate complex is generally larger than the Cp for the enzyme-transition state complex. Consistent with a classical description of enzyme catalysis, a negative value for ΔCp(‡) is the result of the enzyme binding relatively weakly to the substrate and very tightly to the transition state. This observation of negative ΔCp(‡) has important implications for the temperature dependence of enzyme-catalyzed rates. Here, we lay out the fundamentals of MMRT. We present a number of hypotheses that arise directly from MMRT including a theoretical justification for the large size of enzymes and the basis for their optimum temperatures. We rationalize the behavior of psychrophilic enzymes and describe a "psychrophilic trap" which places limits on the evolution of enzymes in low temperature environments. One of the defining characteristics of biology is catalysis of chemical reactions by enzymes, and enzymes drive much of metabolism. Therefore, we also expect to see characteristics of MMRT at the level of cells, whole organisms, and even ecosystems.


Assuntos
Proteínas de Bactérias/metabolismo , Temperatura Baixa , Enzimas/metabolismo , Temperatura Alta , Termodinâmica , Animais , Bacillus subtilis/enzimologia , Proteínas de Bactérias/química , Catálise , Enzimas/química , Cinética , Estrutura Secundária de Proteína
20.
J Biol Chem ; 290(29): 18187-18198, 2015 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-26032422

RESUMO

Allostery, where remote ligand binding alters protein function, is essential for the control of metabolism. Here, we have identified a highly sophisticated allosteric response that allows complex control of the pathway for aromatic amino acid biosynthesis in the pathogen Mycobacterium tuberculosis. This response is mediated by an enzyme complex formed by two pathway enzymes: chorismate mutase (CM) and 3-deoxy-d-arabino-heptulosonate 7-phosphate synthase (DAH7PS). Whereas both enzymes are active in isolation, the catalytic activity of both enzymes is enhanced, and in particular that of the much smaller CM is greatly enhanced (by 120-fold), by formation of a hetero-octameric complex between CM and DAH7PS. Moreover, on complex formation M. tuberculosis CM, which has no allosteric response on its own, acquires allosteric behavior to facilitate its own regulatory needs by directly appropriating and partly reconfiguring the allosteric machinery that provides a synergistic allosteric response in DAH7PS. Kinetic and analytical ultracentrifugation experiments demonstrate that allosteric binding of phenylalanine specifically promotes hetero-octameric complex dissociation, with concomitant reduction of CM activity. Together, DAH7PS and CM from M. tuberculosis provide exquisite control of aromatic amino acid biosynthesis, not only controlling flux into the start of the pathway, but also directing the pathway intermediate chorismate into either Phe/Tyr or Trp biosynthesis.


Assuntos
3-Desoxi-7-Fosfo-Heptulonato Sintase/metabolismo , Aminoácidos Aromáticos/metabolismo , Corismato Mutase/metabolismo , Mycobacterium tuberculosis/enzimologia , Tuberculose/microbiologia , 3-Desoxi-7-Fosfo-Heptulonato Sintase/química , Regulação Alostérica , Corismato Mutase/química , Cristalografia por Raios X , Humanos , Mycobacterium tuberculosis/química , Mycobacterium tuberculosis/metabolismo , Multimerização Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA