Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Behav Res Methods ; 52(5): 1991-2007, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32144729

RESUMO

Pupil size is an easily accessible, noninvasive online indicator of various perceptual and cognitive processes. Pupil measurements have the potential to reveal continuous processing dynamics throughout an experimental trial, including anticipatory responses. However, the relatively sluggish (~2 s) response dynamics of pupil dilation make it challenging to connect changes in pupil size to events occurring close together in time. Researchers have used models to link changes in pupil size to specific trial events, but such methods have not been systematically evaluated. Here we developed and evaluated a general linear model (GLM) pipeline that estimates pupillary responses to multiple rapid events within an experimental trial. We evaluated the modeling approach using a sample dataset in which multiple sequential stimuli were presented within 2-s trials. We found: (1) Model fits improved when the pupil impulse response function (PuRF) was fit for each observer. PuRFs varied substantially across individuals but were consistent for each individual. (2) Model fits also improved when pupil responses were not assumed to occur simultaneously with their associated trial events, but could have non-zero latencies. For example, pupil responses could anticipate predictable trial events. (3) Parameter recovery confirmed the validity of the fitting procedures, and we quantified the reliability of the parameter estimates for our sample dataset. (4) A cognitive task manipulation modulated pupil response amplitude. We provide our pupil analysis pipeline as open-source software (Pupil Response Estimation Toolbox: PRET) to facilitate the estimation of pupil responses and the evaluation of the estimates in other datasets.


Assuntos
Atenção , Pupila , Humanos , Modelos Estatísticos , Pupila/fisiologia , Reprodutibilidade dos Testes
2.
Brain Connect ; 13(1): 4-14, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-35570651

RESUMO

Introduction: Functional movement disorder (FMD) is a type of functional neurological disorder characterized by abnormal movements that patients do not perceive as self-generated. Prior imaging studies show a complex pattern of altered activity, linking regions of the brain involved in emotional responses, motor control, and agency. This study aimed to better characterize these relationships by building a classifier using a support vector machine to accurately distinguish between 61 FMD patients and 59 healthy controls using features derived from resting-state functional magnetic resonance imaging. Materials and Methods: First, we selected 66 seed regions based on prior related studies, then we calculated the full correlation matrix between them before performing recursive feature elimination to winnow the feature set to the most predictive features and building the classifier. Results: We identified 29 features of interest that were highly predictive of the FMD condition, classifying patients and controls with 80% accuracy. Several key features included regions in the right sensorimotor cortex, left dorsolateral prefrontal cortex, left cerebellum, and left posterior insula. Conclusions: The features selected by the model highlight the importance of the interconnected relationship between areas associated with emotion, reward, and sensorimotor integration, potentially mediating communication between regions associated with motor function, attention, and executive function. Exploratory machine learning was able to identify this distinctive abnormal pattern, suggesting that alterations in functional linkages between these regions may be a consistent feature of the condition in many FMD patients. Clinical-Trials.gov ID: NCT00500994 Impact statement Our research presents novel results that further elucidate the pathophysiology of functional movement disorder (FMD) with a machine learning model that classifies FMD and healthy controls correctly 80% of the time. Herein, we demonstrate how known differences in resting-state functional magnetic resonance imaging connectivity in FMD patients can be leveraged to better understand the complex pattern of neural changes in these patients. Knowing that there are measurable predictable differences in brain activity in patients with FMD may help both clinicians and patients conceptualize and better understand the illness at the point of diagnosis and during treatment. Our methods demonstrate how an effective combination of machine learning and qualitative approaches to analyzing functional brain connectivity can enhance our understanding of abnormal patterns of brain activity in FMD patients.


Assuntos
Encéfalo , Transtorno Conversivo , Humanos , Encéfalo/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Córtex Cerebral , Mapeamento Encefálico
3.
Neuroimage Clin ; 29: 102561, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33516934

RESUMO

Spinocerebellar Ataxia type 7 (SCA7) is a neurodegenerative disease characterized by progressive cerebellar ataxia and retinal degeneration. Increasing loss of visual function complicates the use of clinical scales to track the progression of motor symptoms, hampering our ability to develop accurate biomarkers of disease progression, and thus test the efficacy of potential treatments. We aimed to identify imaging measures of neurodegeneration, which may more accurately reflect SCA7 severity and progression. While common structural MRI techniques have been previously used for this purpose, they can be biased by neurodegeneration-driven increases in extracellular CSF-like water. In a cross-sectional study, we analyzed diffusion tensor imaging (DTI) data collected from a cohort of 13 SCA7 patients and 14 healthy volunteers using: 1) a diffusion tensor-based image registration technique, and 2) a dual-compartment DTI model to control for the potential increase in extracellular CSF-like water. These methodologies allowed us to assess both volumetric and microstructural abnormalities in both white and gray matter brain-wide in SCA7 patients for the first time. To measure tissue volume, we performed diffusion tensor-based morphometry (DTBM) using the tensor-based registration. To assess tissue microstructure, we computed the parenchymal mean diffusivity (pMD) and parenchymal fractional anisotropy (pFA) using the dual compartment model. This model also enabled us to estimate the parenchymal volume fraction (pVF), a measure of parenchymal tissue volume within a given voxel. While DTBM and pVF revealed tissue loss primarily in the brainstem, cerebellum, thalamus, and major motor white matter tracts in patients (p < 0.05, FWE corrected; Hedge's g > 1), pMD and pFA detected microstructural abnormalities in virtually all tissues brain-wide (p < 0.05, FWE corrected; Hedge's g > 1). The Scale for the Assessment and Rating of Ataxia trended towards correlation with cerebellar pVF (r = -0.66, p = 0.104, FDR corrected) and global white matter pFA (r = -0.64, p = 0.104, FDR corrected). These results advance our understanding of neurodegeneration in living SCA7 patients by providing the first voxel-wise characterization of white matter volume loss and gray matter microstructural abnormalities. Moving forward, this comprehensive approach could be applied to characterize the full spatiotemporal pattern of neurodegeneration in SCA7, and potentially develop an accurate imaging biomarker of disease progression.


Assuntos
Ataxias Espinocerebelares , Substância Branca , Encéfalo/diagnóstico por imagem , Estudos Transversais , Imagem de Tensor de Difusão , Humanos , Imageamento por Ressonância Magnética , Ataxias Espinocerebelares/diagnóstico por imagem , Substância Branca/diagnóstico por imagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA