Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 18715, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37907611

RESUMO

This investigation documents that the Rugged Terrain Unit, the Stimson formation, and the Greenheugh sandstone were deposited in a 1200 m-deep lake that formed after the emergence of Mt. Sharp in Gale crater, Mars, nearly 4 billion years ago. In fact, the Curiosity rover traversed on a surface that once was the bottom of this lake and systematically examined the strata that were deposited in its deepest waters on the crater floor to layers that formed along its shoreline on Mt. Sharp. This provided a rare opportunity to document the evolution of one aqueous episode from its inception to its desiccation and to determine the warming mechanism that caused it. Deep water lacustrine siltstones directly overlie conglomerates that were deposited by mega floods on the crater floor. This indicates that the inception phase of the lake was sudden and took place when flood waters poured into the crater. The lake expanded quickly and its shoreline moved up the slope of Mt. Sharp during the lake-level rise phase and deposited a layer of sandstone with large cross beds under the influence of powerful storm waves. The lake-level highstand phase was dominated by strong bottom currents that transported sediments downhill and deposited one of the most distinctive sedimentological features in Gale crater: a layer of sandstone with a 3 km-long field of meter-high subaqueous antidunes (the Washboard) on Mt. Sharp. Bottom current continued downhill and deposited sandstone and siltstone on the foothills of Mt. Sharp and on the crater floor, respectively. The lake-level fall phase caused major erosion of lacustrine strata that resulted in their patchy distribution on Mt. Sharp. Eroded sediments were then transported to deep waters by gravity flows and were re-deposited as conglomerate and sandstone in subaqueous channels and in debris flow fans. The desiccation phase took place in calm waters of the lake. The aqueous episode we investigated was vigorous but short-lived. Its characteristics as determined by our sedimentological study matches those predicted by an asteroid impact. This suggests that the heat generated by an impact transformed Mars into a warm, wet, and turbulent planet. It resulted in planet-wide torrential rain, giant floods on land, powerful storms in the atmosphere, and strong waves in lakes. The absence of age dates prevents the determination of how long the lake existed. Speculative rates of lake-level change suggest that the lake could have lasted for a period ranging from 16 to 240 Ky.

2.
Earth Space Sci ; 4(8): 506-539, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-29098171

RESUMO

The Mars Science Laboratory Mast camera and Descent Imager investigations were designed, built, and operated by Malin Space Science Systems of San Diego, CA. They share common electronics and focal plane designs but have different optics. There are two Mastcams of dissimilar focal length. The Mastcam-34 has an f/8, 34 mm focal length lens, and the M-100 an f/10, 100 mm focal length lens. The M-34 field of view is about 20° × 15° with an instantaneous field of view (IFOV) of 218 µrad; the M-100 field of view (FOV) is 6.8° × 5.1° with an IFOV of 74 µrad. The M-34 can focus from 0.5 m to infinity, and the M-100 from ~1.6 m to infinity. All three cameras can acquire color images through a Bayer color filter array, and the Mastcams can also acquire images through seven science filters. Images are ≤1600 pixels wide by 1200 pixels tall. The Mastcams, mounted on the ~2 m tall Remote Sensing Mast, have a 360° azimuth and ~180° elevation field of regard. Mars Descent Imager is fixed-mounted to the bottom left front side of the rover at ~66 cm above the surface. Its fixed focus lens is in focus from ~2 m to infinity, but out of focus at 66 cm. The f/3 lens has a FOV of ~70° by 52° across and along the direction of motion, with an IFOV of 0.76 mrad. All cameras can acquire video at 4 frames/second for full frames or 720p HD at 6 fps. Images can be processed using lossy Joint Photographic Experts Group and predictive lossless compression.

3.
Astrobiology ; 5(6): 663-89, 2005 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16379524

RESUMO

In October 2004, more than 130 terrestrial and planetary scientists met in Jackson Hole, WY, to discuss early Mars. The first billion years of martian geologic history is of particular interest because it is a period during which the planet was most active, after which a less dynamic period ensued that extends to the present day. The early activity left a fascinating geological record, which we are only beginning to unravel through direct observation and modeling. In considering this time period, questions outnumber answers, and one of the purposes of the meeting was to gather some of the best experts in the field to consider the current state of knowledge, ascertain which questions remain to be addressed, and identify the most promising approaches to addressing those questions. The purpose of this report is to document that discussion. Throughout the planet's first billion years, planetary-scale processes-including differentiation, hydrodynamic escape, volcanism, large impacts, erosion, and sedimentation-rapidly modified the atmosphere and crust. How did these processes operate, and what were their rates and interdependencies? The early environment was also characterized by both abundant liquid water and plentiful sources of energy, two of the most important conditions considered necessary for the origin of life. Where and when did the most habitable environments occur? Did life actually occupy them, and if so, has life persisted on Mars to the present? Our understanding of early Mars is critical to understanding how the planet we see today came to be.


Assuntos
Evolução Planetária , Meio Ambiente Extraterreno , Geologia , Marte , Conceitos Meteorológicos , Meio Ambiente Extraterreno/química , Geografia , Fenômenos Geológicos , Vida , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA