Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Am J Hum Genet ; 110(4): 663-680, 2023 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-36965478

RESUMO

The vast majority of human genes encode multiple isoforms through alternative splicing, and the temporal and spatial regulation of those isoforms is critical for organismal development and function. The spliceosome, which regulates and executes splicing reactions, is primarily composed of small nuclear ribonucleoproteins (snRNPs) that consist of small nuclear RNAs (snRNAs) and protein subunits. snRNA gene transcription is initiated by the snRNA-activating protein complex (SNAPc). Here, we report ten individuals, from eight families, with bi-allelic, deleterious SNAPC4 variants. SNAPC4 encoded one of the five SNAPc subunits that is critical for DNA binding. Most affected individuals presented with delayed motor development and developmental regression after the first year of life, followed by progressive spasticity that led to gait alterations, paraparesis, and oromotor dysfunction. Most individuals had cerebral, cerebellar, or basal ganglia volume loss by brain MRI. In the available cells from affected individuals, SNAPC4 abundance was decreased compared to unaffected controls, suggesting that the bi-allelic variants affect SNAPC4 accumulation. The depletion of SNAPC4 levels in HeLa cell lines via genomic editing led to decreased snRNA expression and global dysregulation of alternative splicing. Analysis of available fibroblasts from affected individuals showed decreased snRNA expression and global dysregulation of alternative splicing compared to unaffected cells. Altogether, these data suggest that these bi-allelic SNAPC4 variants result in loss of function and underlie the neuroregression and progressive spasticity in these affected individuals.


Assuntos
Processamento Alternativo , Proteínas de Ligação a DNA , Paraparesia Espástica , Fatores de Transcrição , Paraparesia Espástica/genética , Humanos , Proteínas de Ligação a DNA/genética , Fatores de Transcrição/genética , Células HeLa , Isoformas de Proteínas/genética , RNA-Seq , Masculino , Feminino , Linhagem , Alelos , Lactente , Pré-Escolar , Criança , Adolescente , Estrutura Secundária de Proteína , RNA Nuclear Pequeno/genética
2.
Clin Genet ; 106(1): 90-94, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38424388

RESUMO

Central nervous system (CNS) dural arteriovenous fistulas (DAVF) have been reported in PTEN-related hamartoma tumor syndrome (PHTS). However, PHTS-associated DAVF remain an underexplored field of the PHTS clinical landscape. Here, we studied cases with a PTEN pathogenic variant identified between 2007 and 2020 in our laboratory (n = 58), and for whom brain imaging was available. Two patients had DAVF (2/58, 3.4%), both presenting at advanced stages: a 34-year-old man with a left lateral sinus DAVF at immediate risk of hemorrhage, and a 21-year-old woman with acute intracranial hypertension due to a torcular DAVF. Interestingly, not all patients had 3D TOF/MRA, the optimal sequences to detect DAVF. Early diagnosis of DAVF can be lifesaving, and is easier to treat compared to developed, proliferative, or complex lesions. As a result, one should consider brain MRI with 3D TOF/MRA in PHTS patients at genetic diagnosis, with subsequent surveillance on a case-by-case basis.


Assuntos
Malformações Vasculares do Sistema Nervoso Central , Síndrome do Hamartoma Múltiplo , PTEN Fosfo-Hidrolase , Humanos , Adulto , PTEN Fosfo-Hidrolase/genética , Feminino , Masculino , Malformações Vasculares do Sistema Nervoso Central/genética , Malformações Vasculares do Sistema Nervoso Central/complicações , Malformações Vasculares do Sistema Nervoso Central/diagnóstico por imagem , Malformações Vasculares do Sistema Nervoso Central/diagnóstico , Síndrome do Hamartoma Múltiplo/genética , Síndrome do Hamartoma Múltiplo/complicações , Adulto Jovem , Imageamento por Ressonância Magnética , Mutação
3.
J Med Genet ; 59(10): 965-975, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34930816

RESUMO

BACKGROUND: High-impact pathogenic variants in more than a thousand genes are involved in Mendelian forms of neurodevelopmental disorders (NDD). METHODS: This study describes the molecular and clinical characterisation of 28 probands with NDD harbouring heterozygous AGO1 coding variants, occurring de novo for all those whose transmission could have been verified (26/28). RESULTS: A total of 15 unique variants leading to amino acid changes or deletions were identified: 12 missense variants, two in-frame deletions of one codon, and one canonical splice variant leading to a deletion of two amino acid residues. Recurrently identified variants were present in several unrelated individuals: p.(Phe180del), p.(Leu190Pro), p.(Leu190Arg), p.(Gly199Ser), p.(Val254Ile) and p.(Glu376del). AGO1 encodes the Argonaute 1 protein, which functions in gene-silencing pathways mediated by small non-coding RNAs. Three-dimensional protein structure predictions suggest that these variants might alter the flexibility of the AGO1 linker domains, which likely would impair its function in mRNA processing. Affected individuals present with intellectual disability of varying severity, as well as speech and motor delay, autistic behaviour and additional behavioural manifestations. CONCLUSION: Our study establishes that de novo coding variants in AGO1 are involved in a novel monogenic form of NDD, highly similar to the recently reported AGO2-related NDD.


Assuntos
Proteínas Argonautas , Deficiência Intelectual , Transtornos do Neurodesenvolvimento , Humanos , Aminoácidos/genética , Heterozigoto , Deficiência Intelectual/genética , Deficiência Intelectual/patologia , Transtornos do Neurodesenvolvimento/genética , Transtornos do Neurodesenvolvimento/patologia , RNA Mensageiro , Proteínas Argonautas/genética
4.
Genet Med ; 24(2): 492-498, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34906476

RESUMO

PURPOSE: Biallelic loss-of-function variants in ST3GAL5 cause GM3 synthase deficiency (GM3SD) responsible for Amish infantile epilepsy syndrome. All Amish patients carry the homozygous p.(Arg288Ter) variant arising from a founder effect. To date only 10 patients from 4 non-Amish families have been reported. Thus, the phenotypical spectrum of GM3SD due to other variants and other genetic backgrounds is still poorly known. METHODS: We collected clinical and molecular data from 16 non-Amish patients with pathogenic ST3GAL5 variants resulting in GM3SD. RESULTS: We identified 12 families originating from Reunion Island, Ivory Coast, Italy, and Algeria and carrying 6 ST3GAL5 variants, 5 of which were novel. Genealogical investigations and/or haplotype analyses showed that 3 of these variants were founder alleles. Glycosphingolipids quantification in patients' plasma confirmed the pathogenicity of 4 novel variants. All patients (N = 16), aged 2 to 12 years, had severe to profound intellectual disability, 14 of 16 had a hyperkinetic movement disorder, 11 of 16 had epilepsy and 9 of 16 had microcephaly. Other main features were progressive skin pigmentation anomalies, optic atrophy or pale papillae, and hearing loss. CONCLUSION: The phenotype of non-Amish patients with GM3SD is similar to the Amish infantile epilepsy syndrome, which suggests that GM3SD is associated with a narrow and severe clinical spectrum.


Assuntos
Epilepsia , Epilepsia/complicações , Epilepsia/genética , Homozigoto , Humanos , Sialiltransferases/deficiência , Sialiltransferases/genética
5.
Dev Med Child Neurol ; 64(4): 509-517, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35726608

RESUMO

AIM: To characterize the cortical structure, developmental, and cognitive profiles of patients with WD repeat domain 62 (WDR62)-related primary microcephaly. METHOD: In this observational study, we describe the developmental, neurological, cognitive, and brain imaging characteristics of 17 patients (six males, 11 females; mean age 12y 3mo standard deviation [SD] 5y 8mo, range 5y-24y 6mo) and identify 14 new variants of WDR62. We similarly analyse the phenotypes and genotypes of the 59 previously reported families. RESULTS: Brain malformations, including pachygyria, neuronal heterotopia, schizencephaly, and microlissencephaly, were present in 11 out of 15 patients. The mean full-scale IQ of the 11 assessed patients was 51.8 (standard deviation [SD] 12.6, range 40-70). Intellectual disability was severe in four patients, moderate in four, and mild in three. Scores on the Vineland Adaptive Behavior Scales obtained from 10 patients were low for communication and motor skills (mean 38.29, SD 7.74, and 37.71, SD 5.74 respectively). The socialization score was higher (mean 47.14, SD 12.39). We found a significant difference between scores for communication and daily living skills (mean 54.43, SD 11.6; p=0.001, one-way analysis of variance). One patient displayed progressive ataxia. INTERPRETATION: WDR62-related cognitive consequences may be less severe than expected because 3 out of 11 of the assessed patients had only mild intellectual disability and relatively preserved abilities of autonomy in daily life. We identified progressive ataxia in the second decade of life in one patient, which should encourage clinicians to follow up patients in the long term.


Assuntos
Proteínas de Ciclo Celular , Deficiência Intelectual , Microcefalia , Proteínas do Tecido Nervoso , Adolescente , Ataxia , Proteínas de Ciclo Celular/genética , Criança , Pré-Escolar , Feminino , Humanos , Deficiência Intelectual/diagnóstico , Deficiência Intelectual/genética , Masculino , Microcefalia/diagnóstico , Microcefalia/genética , Proteínas do Tecido Nervoso/genética , Adulto Jovem
6.
J Clin Immunol ; 41(3): 603-609, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33411153

RESUMO

Whilst upregulation of type I interferon (IFN) signaling is common across the type I interferonopathies (T1Is), central nervous system (CNS) involvement varies between these disorders, the basis of which remains unclear. We collected cerebrospinal fluid (CSF) and serum from patients with Aicardi-Goutières syndrome (AGS), STING-associated vasculopathy with onset in infancy (SAVI), presumed monogenic T1Is (pT1I), childhood systemic lupus erythematosus with neuropsychiatric features (nSLE), non-IFN-related autoinflammation (AI) and non-inflammatory hydrocephalus (as controls). We measured IFN-alpha protein using digital ELISA. Eighty-two and 63 measurements were recorded respectively in CSF and serum of 42 patients and 6 controls. In an intergroup comparison (taking one sample per individual), median CSF IFN-alpha levels were elevated in AGS, SAVI, pT1I, and nSLE compared to AI and controls, with levels highest in AGS compared to all other groups. In AGS, CSF IFN-alpha concentrations were higher than in paired serum samples. In contrast, serum IFN was consistently higher compared to CSF levels in SAVI, pT1I, and nSLE. Whilst IFN-alpha is present in the CSF and serum of all IFN-related diseases studied here, our data suggest the primary sites of IFN production in the monogenic T1I AGS and SAVI are, respectively, the CNS and the periphery. These results inform the diagnosis of, and future therapeutic approaches to, monogenic and multifactorial T1Is.


Assuntos
Suscetibilidade a Doenças , Regulação da Expressão Gênica , Interferon Tipo I/genética , Interferon-alfa/genética , Especificidade de Órgãos/genética , Adolescente , Adulto , Estudos de Casos e Controles , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Interferon Tipo I/líquido cefalorraquidiano , Interferon Tipo I/metabolismo , Interferon-alfa/líquido cefalorraquidiano , Interferon-alfa/metabolismo , Masculino , Mutação , Fenótipo , Estudos Retrospectivos , Adulto Jovem
7.
Genet Med ; 23(11): 2150-2159, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34345024

RESUMO

PURPOSE: DYRK1A syndrome is among the most frequent monogenic forms of intellectual disability (ID). We refined the molecular and clinical description of this disorder and developed tools to improve interpretation of missense variants, which remains a major challenge in human genetics. METHODS: We reported clinical and molecular data for 50 individuals with ID harboring DYRK1A variants and developed (1) a specific DYRK1A clinical score; (2) amino acid conservation data generated from 100 DYRK1A sequences across different taxa; (3) in vitro overexpression assays to study level, cellular localization, and kinase activity of DYRK1A mutant proteins; and (4) a specific blood DNA methylation signature. RESULTS: This integrative approach was successful to reclassify several variants as pathogenic. However, we questioned the involvement of some others, such as p.Thr588Asn, still reported as likely pathogenic, and showed it does not cause an obvious phenotype in mice. CONCLUSION: Our study demonstrated the need for caution when interpreting variants in DYRK1A, even those occurring de novo. The tools developed will be useful to interpret accurately the variants identified in the future in this gene.


Assuntos
Deficiência Intelectual , Microcefalia , Proteínas Serina-Treonina Quinases , Proteínas Tirosina Quinases , Animais , Humanos , Deficiência Intelectual/diagnóstico , Deficiência Intelectual/genética , Camundongos , Fenótipo , Proteínas Serina-Treonina Quinases/genética , Proteínas Tirosina Quinases/genética , Quinases Dyrk
8.
J Med Genet ; 57(6): 389-399, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32015000

RESUMO

BACKGROUND: Primary hereditary microcephaly (MCPH) comprises a large group of autosomal recessive disorders mainly affecting cortical development and resulting in a congenital impairment of brain growth. Despite the identification of >25 causal genes so far, it remains a challenge to distinguish between different MCPH forms at the clinical level. METHODS: 7 patients with newly identified mutations in CDK5RAP2 (MCPH3) were investigated by performing prospective, extensive and systematic clinical, MRI, psychomotor, neurosensory and cognitive examinations under similar conditions. RESULTS: All patients displayed neurosensory defects in addition to microcephaly. Small cochlea with incomplete partition type II was found in all cases and was associated with progressive deafness in 4 of them. Furthermore, the CDK5RAP2 protein was specifically identified in the developing cochlea from human fetal tissues. Microphthalmia was also present in all patients along with retinal pigmentation changes and lipofuscin deposits. Finally, hypothalamic anomalies consisting of interhypothalamic adhesions, a congenital midline defect usually associated with holoprosencephaly, was detected in 5 cases. CONCLUSION: This is the first report indicating that CDK5RAP2 not only governs brain size but also plays a role in ocular and cochlear development and is necessary for hypothalamic nuclear separation at the midline. Our data indicate that CDK5RAP2 should be considered as a potential gene associated with deafness and forme fruste of holoprosencephaly. These children should be given neurosensory follow-up to prevent additional comorbidities and allow them reaching their full educational potential. TRIAL REGISTRATION NUMBER: NCT01565005.


Assuntos
Proteínas de Ciclo Celular/genética , Doenças Cocleares/genética , Microcefalia/genética , Proteínas do Tecido Nervoso/genética , Criança , Pré-Escolar , Cóclea/diagnóstico por imagem , Cóclea/metabolismo , Cóclea/patologia , Doenças Cocleares/diagnóstico por imagem , Doenças Cocleares/patologia , Anemia de Fanconi/genética , Anemia de Fanconi/patologia , Feminino , Humanos , Hipotálamo/diagnóstico por imagem , Hipotálamo/patologia , Lactente , Imageamento por Ressonância Magnética , Masculino , Microcefalia/diagnóstico por imagem , Microcefalia/patologia , Mutação , Neurogênese/genética , Linhagem , Retina/diagnóstico por imagem , Retina/patologia
9.
BMC Med Educ ; 21(1): 529, 2021 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-34645453

RESUMO

BACKGROUND: Many initiatives have emerged worldwide to handle the surge of hospitalizations during the SARS-CoV-2 pandemic. In France, the University of Paris North called on its medical students, whose status makes them integral members of the healthcare staff, to volunteer in their capacity of medical students and/or as nurses/nursing aids in understaffed intensive care units and other Covid-19 services. We attempted to evaluate their commitment, whether the pandemic affected their certainty for the medical profession and career choices, and how they scored their sadness and anxiety levels. METHODS: The University of Paris North took a weekly official census of the involvement of 1205 4th-6th year medical students during the first lockdown in France. Six weeks after the lockdown began (May 4th), an e-questionnaire was sent to 2145 2nd-6th year medical students. The survey lasted 4 weeks and documented volunteering by medical students, the association between the pandemic and certainty for their profession, their choice of medical specialty and factors that influenced sadness and anxiety scores. RESULTS: 82% of 4th-6th year medical students volunteered to continue their internship or be reassigned to COVID-19 units. Of 802 2nd-6th year students who completed the e-questionnaire, 742 (93%) volunteered in Covid-19 units, of which half acted as nurses. This engagement reinforced the commitment of 92% of volunteers to become physicians. However, at the peak of the outbreak, 17% had doubts about their ability to be physicians, while 12% reconsidered their choice of future specialty. Finally, 38% of students reported a score of 7/10 or more on the sadness scale, and 43% a score of 7/10 or more for anxiety. Neither study year nor service influenced sadness or anxiety scores. However, gender influenced both, with women scoring significantly higher than men (p < 0.0001). CONCLUSION: Medical students of the University of Paris North who made an early and unconditional commitment to help hospital staff handle the pandemic constituted a powerful healthcare reserve force during the crisis. Although the vast majority remained convinced that they want to become physicians, this experience came at a significant psychological cost, especially for women. Alleviating this cost would improve future crisis responses.


Assuntos
COVID-19 , Médicos , Estudantes de Medicina , Controle de Doenças Transmissíveis , Feminino , Humanos , Masculino , SARS-CoV-2 , Inquéritos e Questionários
10.
Hum Mutat ; 41(2): 512-524, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31696992

RESUMO

Primary microcephaly (PM) is characterized by a small head since birth and is vastly heterogeneous both genetically and phenotypically. While most cases are monogenic, genetic interactions between Aspm and Wdr62 have recently been described in a mouse model of PM. Here, we used two complementary, holistic in vivo approaches: high throughput DNA sequencing of multiple PM genes in human patients with PM, and genome-edited zebrafish modeling for the digenic inheritance of PM. Exomes of patients with PM showed a significant burden of variants in 75 PM genes, that persisted after removing monogenic causes of PM (e.g., biallelic pathogenic variants in CEP152). This observation was replicated in an independent cohort of patients with PM, where a PM gene panel showed in addition that the burden was carried by six centrosomal genes. Allelic frequencies were consistent with digenic inheritance. In zebrafish, non-centrosomal gene casc5 -/- produced a severe PM phenotype, that was not modified by centrosomal genes aspm or wdr62 invalidation. A digenic, quadriallelic PM phenotype was produced by aspm and wdr62. Our observations provide strong evidence for digenic inheritance of human PM, involving centrosomal genes. Absence of genetic interaction between casc5 and aspm or wdr62 further delineates centrosomal and non-centrosomal pathways in PM.


Assuntos
Centrossomo/metabolismo , Estudos de Associação Genética , Predisposição Genética para Doença , Padrões de Herança , Microcefalia/diagnóstico , Microcefalia/genética , Animais , Bases de Dados Genéticas , Estudos de Associação Genética/métodos , Humanos , Mutação , Fases de Leitura Aberta , Fenótipo , Transdução de Sinais , Sequenciamento do Exoma , Peixe-Zebra
11.
Am J Hum Genet ; 99(2): 511-20, 2016 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-27453579

RESUMO

Primary microcephaly is a neurodevelopmental disorder that is caused by a reduction in brain size as a result of defects in the proliferation of neural progenitor cells during development. Mutations in genes encoding proteins that localize to the mitotic spindle and centrosomes have been implicated in the pathogenicity of primary microcephaly. In contrast, the contractile ring and midbody required for cytokinesis, the final stage of mitosis, have not previously been implicated by human genetics in the molecular mechanisms of this phenotype. Citron kinase (CIT) is a multi-domain protein that localizes to the cleavage furrow and midbody of mitotic cells, where it is required for the completion of cytokinesis. Rodent models of Cit deficiency highlighted the role of this gene in neurogenesis and microcephaly over a decade ago. Here, we identify recessively inherited pathogenic variants in CIT as the genetic basis of severe microcephaly and neonatal death. We present postmortem data showing that CIT is critical to building a normally sized human brain. Consistent with cytokinesis defects attributed to CIT, multinucleated neurons were observed throughout the cerebral cortex and cerebellum of an affected proband, expanding our understanding of mechanisms attributed to primary microcephaly.


Assuntos
Genes Recessivos/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Microcefalia/genética , Neurônios/patologia , Proteínas Serina-Treonina Quinases/genética , Cerebelo/patologia , Criança , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Microcefalia/patologia , Neocórtex/patologia , Splicing de RNA/genética
12.
Am J Hum Genet ; 99(2): 451-9, 2016 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-27476655

RESUMO

Cellular homeostasis is maintained by the highly organized cooperation of intracellular trafficking systems, including COPI, COPII, and clathrin complexes. COPI is a coatomer protein complex responsible for intracellular protein transport between the endoplasmic reticulum and the Golgi apparatus. The importance of such intracellular transport mechanisms is underscored by the various disorders, including skeletal disorders such as cranio-lenticulo-sutural dysplasia and osteogenesis imperfect, caused by mutations in the COPII coatomer complex. In this article, we report a clinically recognizable craniofacial disorder characterized by facial dysmorphisms, severe micrognathia, rhizomelic shortening, microcephalic dwarfism, and mild developmental delay due to loss-of-function heterozygous mutations in ARCN1, which encodes the coatomer subunit delta of COPI. ARCN1 mutant cell lines were revealed to have endoplasmic reticulum stress, suggesting the involvement of ER stress response in the pathogenesis of this disorder. Given that ARCN1 deficiency causes defective type I collagen transport, reduction of collagen secretion represents the likely mechanism underlying the skeletal phenotype that characterizes this condition. Our findings demonstrate the importance of COPI-mediated transport in human development, including skeletogenesis and brain growth.


Assuntos
Complexo I de Proteína do Envoltório/metabolismo , Proteína Coatomer/genética , Anormalidades Craniofaciais/genética , Mutação , Adulto , Proteína Coatomer/metabolismo , Colágeno/metabolismo , Estresse do Retículo Endoplasmático , Heterozigoto , Humanos , Lactente , Recém-Nascido , Masculino , Síndrome
13.
Genet Med ; 21(9): 2043-2058, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-30842647

RESUMO

PURPOSE: Microcephaly is a sign of many genetic conditions but has been rarely systematically evaluated. We therefore comprehensively studied the clinical and genetic landscape of an unselected cohort of patients with microcephaly. METHODS: We performed clinical assessment, high-resolution chromosomal microarray analysis, exome sequencing, and functional studies in 62 patients (58% with primary microcephaly [PM], 27% with secondary microcephaly [SM], and 15% of unknown onset). RESULTS: We found severity of developmental delay/intellectual disability correlating with severity of microcephaly in PM, but not SM. We detected causative variants in 48.4% of patients and found divergent inheritance and variant pattern for PM (mainly recessive and likely gene-disrupting [LGD]) versus SM (all dominant de novo and evenly LGD or missense). While centrosome-related pathways were solely identified in PM, transcriptional regulation was the most frequently affected pathway in both SM and PM. Unexpectedly, we found causative variants in different mitochondria-related genes accounting for ~5% of patients, which emphasizes their role even in syndromic PM. Additionally, we delineated novel candidate genes involved in centrosome-related pathway (SPAG5, TEDC1), Wnt signaling (VPS26A, ZNRF3), and RNA trafficking (DDX1). CONCLUSION: Our findings enable improved evaluation and genetic counseling of PM and SM patients and further elucidate microcephaly pathways.


Assuntos
Deficiências do Desenvolvimento/genética , Predisposição Genética para Doença , Deficiência Intelectual/genética , Microcefalia/genética , Adolescente , Proteínas de Ciclo Celular/genética , Criança , Pré-Escolar , RNA Helicases DEAD-box/genética , Deficiências do Desenvolvimento/patologia , Exoma/genética , Feminino , Regulação da Expressão Gênica/genética , Humanos , Lactente , Deficiência Intelectual/patologia , Masculino , Microcefalia/patologia , Mutação , Linhagem , Fenótipo , Ubiquitina-Proteína Ligases/genética , Sequenciamento do Exoma , Via de Sinalização Wnt
14.
Hum Mutat ; 39(3): 319-332, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29243349

RESUMO

Autosomal recessive microcephaly or microcephaly primary hereditary (MCPH) is a genetically heterogeneous neurodevelopmental disorder characterized by a reduction in brain volume, indirectly measured by an occipitofrontal circumference (OFC) 2 standard deviations or more below the age- and sex-matched mean (-2SD) at birth and -3SD after 6 months, and leading to intellectual disability of variable severity. The abnormal spindle-like microcephaly gene (ASPM), the human ortholog of the Drosophila melanogaster "abnormal spindle" gene (asp), encodes ASPM, a protein localized at the centrosome of apical neuroprogenitor cells and involved in spindle pole positioning during neurogenesis. Loss-of-function mutations in ASPM cause MCPH5, which affects the majority of all MCPH patients worldwide. Here, we report 47 unpublished patients from 39 families carrying 28 new ASPM mutations, and conduct an exhaustive review of the molecular, clinical, neuroradiological, and neuropsychological features of the 282 families previously reported (with 161 distinct ASPM mutations). Furthermore, we show that ASPM-related microcephaly is not systematically associated with intellectual deficiency and discuss the association between the structural brain defects (strong reduction in cortical volume and surface area) that modify the cortical map of these patients and their cognitive abilities.


Assuntos
Microcefalia/genética , Mutação/genética , Proteínas do Tecido Nervoso/genética , Pré-Escolar , Cognição , Estudos de Coortes , Família , Feminino , Estudos de Associação Genética , Geografia , Humanos , Lactente , Imageamento por Ressonância Magnética , Masculino , Microcefalia/epidemiologia
15.
Am J Hum Genet ; 96(4): 666-74, 2015 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-25817018

RESUMO

We have identified TUBGCP4 variants in individuals with autosomal-recessive microcephaly and chorioretinopathy. Whole-exome sequencing performed on one family with two affected siblings and independently on another family with one affected child revealed compound-heterozygous mutations in TUBGCP4. Subsequent Sanger sequencing was performed on a panel of individuals from 12 French families affected by microcephaly and ophthalmic manifestations, and one other individual was identified with compound-heterozygous mutations in TUBGCP4. One synonymous variant was common to all three families and was shown to induce exon skipping; the other mutations were frameshift mutations and a deletion. TUBGCP4 encodes γ-tubulin complex protein 4, a component belonging to the γ-tubulin ring complex (γ-TuRC) and known to regulate the nucleation and organization of microtubules. Functional analysis of individual fibroblasts disclosed reduced levels of the γ-TuRC, altered nucleation and organization of microtubules, abnormal nuclear shape, and aneuploidy. Moreover, zebrafish treated with morpholinos against tubgcp4 were found to have reduced head volume and eye developmental anomalies with chorioretinal dysplasia. In summary, the identification of TUBGCP4 mutations in individuals with microcephaly and a spectrum of anomalies in eye development, particularly photoreceptor anomalies, provides evidence of an important role for the γ-TuRC in brain and eye development.


Assuntos
Doenças da Coroide/genética , Oftalmopatias Hereditárias/genética , Microcefalia/genética , Proteínas Associadas aos Microtúbulos/genética , Microtúbulos/genética , Doenças Retinianas/genética , Tubulina (Proteína)/metabolismo , Sequência de Bases , Exoma/genética , Mutação da Fase de Leitura/genética , França , Componentes do Gene , Humanos , Microtúbulos/metabolismo , Dados de Sequência Molecular , Linhagem , Análise de Sequência de DNA
16.
Dev Neurosci ; 40(5-6): 396-416, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30878996

RESUMO

The Golgi apparatus (GA) is involved in a whole spectrum of activities, from lipid biosynthesis and membrane secretion to the posttranslational processing and trafficking of most proteins, the control of mitosis, cell polarity, migration and morphogenesis, and diverse processes such as apoptosis, autophagy, and the stress response. In keeping with its versatility, mutations in GA proteins lead to a number of different disorders, including syndromes with multisystem involvement. Intriguingly, however, > 40% of the GA-related genes known to be associated with disease affect the central or peripheral nervous system, highlighting the critical importance of the GA for neural function. We have previously proposed the term "Golgipathies" in relation to a group of disorders in which mutations in GA proteins or their molecular partners lead to consequences for brain development, in particular postnatal-onset microcephaly (POM), white-matter defects, and intellectual disability (ID). Here, taking into account the broader role of the GA in the nervous system, we refine and enlarge this emerging concept to include other disorders whose symptoms may be indicative of altered neurodevelopmental processes, from neurogenesis to neuronal migration and the secretory function critical for the maturation of postmitotic neurons and myelination.

17.
Brain ; 140(10): 2597-2609, 2017 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-28969387

RESUMO

Microlissencephaly is a rare brain malformation characterized by congenital microcephaly and lissencephaly. Microlissencephaly is suspected to result from abnormalities in the proliferation or survival of neural progenitors. Despite the recent identification of six genes involved in microlissencephaly, the pathophysiological basis of this condition remains poorly understood. We performed trio-based whole exome sequencing in seven subjects from five non-consanguineous families who presented with either microcephaly or microlissencephaly. This led to the identification of compound heterozygous mutations in WDR81, a gene previously associated with cerebellar ataxia, intellectual disability and quadrupedal locomotion. Patient phenotypes ranged from severe microcephaly with extremely reduced gyration with pontocerebellar hypoplasia to moderate microcephaly with cerebellar atrophy. In patient fibroblast cells, WDR81 mutations were associated with increased mitotic index and delayed prometaphase/metaphase transition. Similarly, in vivo, we showed that knockdown of the WDR81 orthologue in Drosophila led to increased mitotic index of neural stem cells with delayed mitotic progression. In summary, we highlight the broad phenotypic spectrum of WDR81-related brain malformations, which include microcephaly with moderate to extremely reduced gyration and cerebellar anomalies. Our results suggest that WDR81 might have a role in mitosis that is conserved between Drosophila and humans.


Assuntos
Fibroblastos/citologia , Microcefalia/genética , Microcefalia/patologia , Mitose/genética , Mutação/genética , Proteínas do Tecido Nervoso/genética , Células-Tronco Neurais/citologia , Animais , Animais Geneticamente Modificados , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Células Cultivadas , Pré-Escolar , Drosophila , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Feminino , Fibroblastos/patologia , Regulação da Expressão Gênica/genética , Humanos , Antígeno Ki-67/metabolismo , Masculino , Microcefalia/diagnóstico por imagem , Células-Tronco Neurais/patologia , Interferência de RNA/fisiologia , Adulto Jovem
18.
Hum Mol Genet ; 24(10): 2771-83, 2015 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-25652408

RESUMO

Dymeclin is a Golgi-associated protein whose deficiency causes Dyggve-Melchior-Clausen syndrome (DMC, MIM #223800), a rare recessively inherited spondyloepimetaphyseal dysplasia consistently associated with postnatal microcephaly and intellectual disability. While the skeletal phenotype of DMC patients has been extensively described, very little is known about their cerebral anomalies, which result in brain growth defects and cognitive dysfunction. We used Dymeclin-deficient mice to determine the cause of microcephaly and to identify defective mechanisms at the cellular level. Brain weight and volume were reduced in all mutant mice from postnatal day 5 onward. Mutant mice displayed a narrowing of the frontal cortex, although cortical layers were normally organized. Interestingly, the corpus callosum was markedly thinner, a characteristic we also identified in DMC patients. Consistent with this, the myelin sheath was thinner, less compact and not properly rolled, while the number of mature oligodendrocytes and their ability to produce myelin basic protein were significantly decreased. Finally, cortical neurons from mutant mice and primary fibroblasts from DMC patients displayed substantially delayed endoplasmic reticulum to Golgi trafficking, which could be fully rescued upon Dymeclin re-expression. These findings indicate that Dymeclin is crucial for proper myelination and anterograde neuronal trafficking, two processes that are highly active during postnatal brain maturation.


Assuntos
Nanismo/genética , Deficiência Intelectual/genética , Proteínas de Membrana/genética , Microcefalia/genética , Osteocondrodisplasias/congênito , Proteínas/genética , Animais , Pré-Escolar , Regulação para Baixo , Retículo Endoplasmático Rugoso/metabolismo , Feminino , Complexo de Golgi/metabolismo , Humanos , Lactente , Peptídeos e Proteínas de Sinalização Intracelular , Masculino , Camundongos , Camundongos Mutantes , Mutação , Bainha de Mielina/genética , Bainha de Mielina/fisiologia , Osteocondrodisplasias/genética , Transporte Proteico/genética , Transporte Proteico/fisiologia
19.
Hum Genet ; 136(4): 463-479, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28283832

RESUMO

Subtelomeric 1q43q44 microdeletions cause a syndrome associating intellectual disability, microcephaly, seizures and anomalies of the corpus callosum. Despite several previous studies assessing genotype-phenotype correlations, the contribution of genes located in this region to the specific features of this syndrome remains uncertain. Among those, three genes, AKT3, HNRNPU and ZBTB18 are highly expressed in the brain and point mutations in these genes have been recently identified in children with neurodevelopmental phenotypes. In this study, we report the clinical and molecular data from 17 patients with 1q43q44 microdeletions, four with ZBTB18 mutations and seven with HNRNPU mutations, and review additional data from 37 previously published patients with 1q43q44 microdeletions. We compare clinical data of patients with 1q43q44 microdeletions with those of patients with point mutations in HNRNPU and ZBTB18 to assess the contribution of each gene as well as the possibility of epistasis between genes. Our study demonstrates that AKT3 haploinsufficiency is the main driver for microcephaly, whereas HNRNPU alteration mostly drives epilepsy and determines the degree of intellectual disability. ZBTB18 deletions or mutations are associated with variable corpus callosum anomalies with an incomplete penetrance. ZBTB18 may also contribute to microcephaly and HNRNPU to thin corpus callosum, but with a lower penetrance. Co-deletion of contiguous genes has additive effects. Our results confirm and refine the complex genotype-phenotype correlations existing in the 1qter microdeletion syndrome and define more precisely the neurodevelopmental phenotypes associated with genetic alterations of AKT3, ZBTB18 and HNRNPU in humans.


Assuntos
Deleção Cromossômica , Cromossomos Humanos Par 1 , Ribonucleoproteínas Nucleares Heterogêneas/genética , Mutação , Transtornos do Neurodesenvolvimento/genética , Fenótipo , Proteínas Repressoras/genética , Humanos
20.
Am J Hum Genet ; 94(3): 385-94, 2014 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-24581742

RESUMO

Moyamoya is a cerebrovascular condition characterized by a progressive stenosis of the terminal part of the internal carotid arteries (ICAs) and the compensatory development of abnormal "moyamoya" vessels. The pathophysiological mechanisms of this condition, which leads to ischemic and hemorrhagic stroke, remain unknown. It can occur as an isolated cerebral angiopathy (so-called moyamoya disease) or in association with various conditions (moyamoya syndromes). Here, we describe an autosomal-recessive disease leading to severe moyamoya and early-onset achalasia in three unrelated families. This syndrome is associated in all three families with homozygous mutations in GUCY1A3, which encodes the α1 subunit of soluble guanylate cyclase (sGC), the major receptor for nitric oxide (NO). Platelet analysis showed a complete loss of the soluble α1ß1 guanylate cyclase and showed an unexpected stimulatory role of sGC within platelets. The NO-sGC-cGMP pathway is a major pathway controlling vascular smooth-muscle relaxation, vascular tone, and vascular remodeling. Our data suggest that alterations of this pathway might lead to an abnormal vascular-remodeling process in sensitive vascular areas such as ICA bifurcations. These data provide treatment options for affected individuals and strongly suggest that investigation of GUCY1A3 and other members of the NO-sGC-cGMP pathway is warranted in both isolated early-onset achalasia and nonsyndromic moyamoya.


Assuntos
Acalasia Esofágica/metabolismo , Guanilato Ciclase/genética , Guanilato Ciclase/fisiologia , Doença de Moyamoya/metabolismo , Óxido Nítrico/química , Receptores Citoplasmáticos e Nucleares/genética , Receptores Citoplasmáticos e Nucleares/fisiologia , Adolescente , Adulto , Plaquetas/metabolismo , Criança , Pré-Escolar , GMP Cíclico/metabolismo , Feminino , Genótipo , Homozigoto , Humanos , Masculino , Músculo Liso Vascular/metabolismo , Mutação , Óxido Nítrico/metabolismo , Linhagem , Adesividade Plaquetária , Agregação Plaquetária , Guanilil Ciclase Solúvel , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA